码迷,mamicode.com
首页 > 编程语言 > 详细

[补档计划] 类欧几里得算法

时间:2017-07-20 22:33:00      阅读:187      评论:0      收藏:0      [点我收藏+]

标签:floor   rac   $$   计划   begin   amp   n+1   sum   nbsp   

$$\begin{aligned} f(a, b, c, n) & = \sum_{i = 0}^n \lfloor \frac{ai + b}{c} \rfloor \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [j < \lfloor \frac{ai + b}{c} \rfloor] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [j + 1 \le \lfloor \frac{ai + b}{c} \rfloor] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [j + 1 \le \frac{ai+b}{c}] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [cj + c - b \le ai] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [cj + c - b -1 < ai] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [\frac{cj + c - b - 1}{a} < i] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [\lfloor \frac{cj + c - b - 1}{a} \rfloor < i] \\ & = \sum_{j = 0}^{m-1}\sum_{i = 0}^n [\lfloor \frac{cj + c - b - 1}{a} \rfloor < i] \\ & = \sum_{j = 0}^{m-1} (n+1 - \sum_{i = 0}^n [\lfloor \frac{cj + c - b - 1}{a} \rfloor \ge i]) \\ & = \sum_{j = 0}^{m-1} (n+1 -\lfloor \frac{cj + c - b - 1}{a} \rfloor - 1) \\ & = \sum_{j = 0}^{m-1} (n - \lfloor \frac{cj + c - b - 1}{a} \rfloor) \\ & = m \times n - \sum_{j = 0}^{m-1} \lfloor \frac{cj + (c - b - 1)}{a} \rfloor \\ & = m \times n - f(c, c-b-1, a, m-1) \end{aligned} $$

[补档计划] 类欧几里得算法

标签:floor   rac   $$   计划   begin   amp   n+1   sum   nbsp   

原文地址:http://www.cnblogs.com/Sdchr/p/7214495.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!