码迷,mamicode.com
首页 > 编程语言 > 详细

最短路之Floyd算法

时间:2017-07-24 00:22:43      阅读:179      评论:0      收藏:0      [点我收藏+]

标签:turn   scan   最短路问题   基本   for   初始化   nbsp   距离   bsp   

1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

技术分享

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=1; i<=n; i++)
{
    for(j=1; j<=n; j++)
    {
        if ( e[i][j] > e[i][1]+e[1][j] )
            e[i][j] = e[i][1]+e[1][j];
    }
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=1; i<=n; i++)
    for(j=1; j<=n; j++)
        if (e[i][j] > e[i][1]+e[1][j]) 
            e[i][j]=e[i][1]+e[1][j];
//经过2号顶点
for(i=1; i<=n; i++)
    for(j=1; j<=n; j++)
        if (e[i][j] > e[i][2]+e[2][j])  
            e[i][j]=e[i][2]+e[2][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=1; k<=n; k++)
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if(e[i][j]>e[i][k]+e[k][j])
                e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
int map[1000][1000];
int main()
{
    int k,i,j,n,m;
    //读入n和m,n表示顶点个数,m表示边的条数
    scanf("%d %d",&n,&m);

    //初始化
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if(i==j)
                map[i][j]=0;
            else
                map[i][j]=inf;
    int a,b,c;
    //读入边
    for(i=1; i<=m; i++)
    {
        scanf("%d %d %d",&a,&b,&c);
        map[a][b]=c;//这是一个有向图
    }

    //Floyd-Warshall算法核心语句
    for(k=1; k<=n; k++)
        for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                if(map[i][j]>map[i][k]+map[k][j] )
                    map[i][j]=map[i][k]+map[k][j];

    //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
    for(i=1; i<=n; i++)
    {
        for(j=1; j<=n; j++)
        {
            printf("%10d",map[i][j]);
        }
        printf("\n");
    }
    return 0;
}

 

最短路之Floyd算法

标签:turn   scan   最短路问题   基本   for   初始化   nbsp   距离   bsp   

原文地址:http://www.cnblogs.com/aiguona/p/7226446.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!