标签:style blog class code java color
本章介绍邻接矩阵有向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!
目录
1. 邻接矩阵有向图的介绍
2. 邻接矩阵有向图的代码说明
3. 邻接矩阵有向图的完整源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
邻接矩阵有向图是指通过邻接矩阵表示的有向图。
上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。
上图右边的矩阵是G2在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点到第j个顶点是一条边,A[i][j]=0则表示不是一条边;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)到第2个顶点(C)是一条边。
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
2. 创建矩阵
这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据。
2.1 创建图(用已提供的矩阵)
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘};
char edges[][2] = {
{‘A‘, ‘B‘},
{‘B‘, ‘C‘},
{‘B‘, ‘E‘},
{‘B‘, ‘F‘},
{‘C‘, ‘E‘},
{‘D‘, ‘C‘},
{‘E‘, ‘B‘},
{‘E‘, ‘D‘},
{‘F‘, ‘G‘}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
pG->vexs[i] = vexs[i];
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = get_position(*pG, edges[i][0]);
p2 = get_position(*pG, edges[i][1]);
pG->matrix[p1][p2] = 1;
}
return pG;
}
createexamplegraph()是的作用是创建一个邻接矩阵有向图。实际上,该方法创建的有向图,就是上面的图G2。
2.2 创建图(自己输入)
/*
* 创建图(自己输入)
*/
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}
// 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
pG->matrix[p1][p2] = 1;
}
return pG;
}
create_graph()是读取用户的输入,将输入的数据转换成对应的有向图。
点击查看:源代码
邻接矩阵有向图(一)之 C语言详解,布布扣,bubuko.com
标签:style blog class code java color
原文地址:http://www.cnblogs.com/skywang12345/p/3707614.html