标签:blog http color os io ar strong for art
一、什么是最优二叉查找树
最优二叉查找树:
给定n个互异的关键字组成的序列K=<k1,k2,...,kn>,且关键字有序(k1<k2<...<kn),我们想从这些关键字中构造一棵二叉查找树。对每个关键字ki,一次搜索搜索到的概率为pi。可能有一些搜索的值不在K内,因此还有n+1个“虚拟键”d0,d1,...,dn,他们代表不在K内的值。具体:d0代表所有小于k1的值,dn代表所有大于kn的值。而对于i = 1,2,...,n-1,虚拟键di代表所有位于ki和ki+1之间的值。对于每个虚拟键,一次搜索对应于di的概率为qi。要使得查找一个节点的期望代价(代价可以定义为:比如从根节点到目标节点的路径上节点数目)最小,就需要建立一棵最优二叉查找树。
图一显示了给定上面的概率分布pi、qi,生成的两个二叉查找树的例子。图二就是在这种情况下一棵最优二叉查找树。
概率分布:
i |
0 |
1 |
2 |
3 |
4 |
5 |
---|---|---|---|---|---|---|
pi |
0.15 |
0.10 |
0.05 |
0.10 |
0.20 |
|
qi |
0.05 |
0.10 |
0.05 |
0.05 |
0.05 |
0.10 |
已知每个关键字以及虚拟键被搜索到的概率,可以计算出一个给定二叉查找树内一次搜索的期望代价。假设一次搜索的实际代价为检查的节点的个数,即所发现的节点的深度加1.计算一次搜索的期望代价等式为:
建立一棵二叉查找树,如果是的上式最小,那么这棵二叉查找树就是最优二叉查找树。
而且有下式成立:
二、最优二叉查找树的最优子结构
最优子结构:
如果一棵最优二叉查找树T有一棵包含关键字ki,..,kj的子树T‘,那么这可子树T‘对于关键字Ki,...,kj和虚拟键di-1,...dj的子问题也必定是最优的。可以应用剪贴法证明。
根据最优子结构,寻找最优解:
给定关键字ki,...,kj,假设kr(i<=r<=j)是包含这些键的一棵最优子树的根。其左子树包含关键字ki,...,kr-1和虚拟键di-1,...,dr-1,右子树包含关键字kr+1,...,kj和虚拟键dr,...dj。我们检查所有的候选根kr,就保证可以找到一棵最优二叉查找树。
递归解:
定义e[i,j]为包含关键字ki,...,kj的最优二叉查找树的期望代价,最终要计算的是e[1,n]。
当j = i - 1时,此时子树中只有虚拟键,期望搜索代价为e[i,i - 1] = qi-1.
当j >= i时,需要从ki,...,kj中选择一个根kr,然后分别构造其左子树和右子树。下面需要计算以kr为根的树的期望搜索代价。然后选择导致最小期望搜索代价的kr做根。
现在需要考虑的是,当一棵树成为一个节点的子树时,期望搜索代价怎么变化?子树中每个节点深度都增加1.期望搜索代价增加量为子树中所有概率的总和。
对一棵关键字ki,...,kj的子树,定义其概率总和为:
因此,以kr为根的子树的期望搜索代价为:
而
因此e[i,j]可以进一步写为:
这样推导出最终的递归公式为:
三、代码实现(C++):
我们将表e、w以及root旋转45°,便于查看上述程序的计算过程。上述代码核心在于函数optimalBST,其计算顺序是从下到上、从左到右。首先是依据概率数组pi、qi初始化:给最下面的一行赋值。然后是三个for循环:从下到上计算表中每一行的值,可以充分利用前面计算出来的结果。如果每当计算e[i][j]的时候都从头开始计算w[i][j],那么需要O(j-i)步加法,但是将这些值保存在表w[1...n+1][0...n]中,就避免这些复杂的计算。
输出结果:
最优二叉树--http://blog.csdn.net/xiajun07061225/article/details/8088784
标签:blog http color os io ar strong for art
原文地址:http://www.cnblogs.com/kimmychul/p/3955932.html