判定树是一个类似于流程图的树结构:其中,每个内部节点表示一个属性上的测试,每个分支代表一个属性的输出,而每个树叶节点代表类或者类分布。树的最顶层是根节点。
根据没有任何属性来分类,数据集本身的目标类的信息值:
以年龄来分的信息熵:
所以:
同理:Gain(income) = 0.029, Gain(student) =0.151,Gain(credit_rating)=0.048
所以,选择age作为第一个根节点,得到:
重复上面的步骤。
算法:
树以代表训练样本的单个结点开始(步骤1)。
如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
所有的属性都是分类的,即离散值。连续属性必须离散化。(也就是自己设置阈值)
对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
递归划分步骤仅当下列条件之一成立停止:
(a) 给定结点的所有样本属于同一类(步骤2 和3)。
(b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
点样本的类分布。
(c) 分枝
test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
创建一个树叶(步骤12)
各种算法之间的共同点:都是贪心算法,自上而下;区别:属性选择度量方法不同
4、树剪枝叶(避免overfitting)
4.1 先剪枝(分到某一个程度之后不再分)
4.2 后剪枝(先把所有情况分完,再决定剪枝)
5、决策树的优缺点
优点:直观,便于理解,小规模数据集有效性好
缺点:处理连续变量不好
类别较多时,错误的增加比较快
可规模性一般。