码迷,mamicode.com
首页 > Windows程序 > 详细

Codeforces 839D Winter is here - 暴力 - 容斥原理

时间:2017-08-15 16:02:58      阅读:272      评论:0      收藏:0      [点我收藏+]

标签:子集   ssi   ready   force   求导   and   some   pac   spec   

Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.

He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.

Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).

Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.

Input

The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.

Output

Print one integer — the strength of John Snow‘s army modulo 1000000007 (109 + 7).

Examples
input
3
3 3 1
output
12
input
4
2 3 4 6
output
39
Note

In the first sample the clans are {1}, {2}, {1, 2} so the answer will be 1·3 + 1·3 + 2·3 = 12


  题目大意 给定n,集合A,设技术分享表示把这个集合内的所有数求最大公约数的结果,求技术分享

  根据常用套路,套一个循环去枚举gcd的结果,然后再求系数,于是有

技术分享

  现在设技术分享,于是有技术分享

  现在考虑求f(i)。可以想到容斥原理。

  先假设所有的集合的gcd是i的倍数都符合条件然后计算答案(给定数集A中所有是i的倍数的数组成的集合任选一个子集),然后再减去f(2i), f(3i),...

  现在要面临两个问题

  1. 第一次求值如何处理?
    首先把式子写出来,设这个集合的大小为n,那么有技术分享

    因为技术分享

    对两边同时进行求导得到技术分享

    再带入x = 1得到技术分享

  2. 技术分享为是i的倍数的数的个数,如何快速求出技术分享?

    根据定义式有技术分享

    显然超时。虽然这是暴力,但是不够优美。
    技术分享表示,集合A中恰好为i的数有多少个。

     然后就可以得到总时间复杂度为O(mlog2m)的暴力:技术分享

  最后求求和就完事了。

Code

 1 /**
 2  * Codeforces
 3  * Problem#839D
 4  * Accepted
 5  * Time: 171ms
 6  * Memory: 15400k
 7  */
 8 #include <bits/stdc++.h>
 9 using namespace std;
10 
11 const int lim = 1e6 + 1;
12 const int moder = 1e9 + 7;
13 
14 int n;
15 int *a;
16 int *pow2;
17 int cnt[lim], counter[lim];
18 int f[lim];
19 int res = 0;
20 
21 inline void init() {
22     scanf("%d", &n);
23     a = new int[(n + 1)];
24     pow2 = new int[(n + 1)];
25     pow2[0] = 1;
26     for(int i = 1; i <= n; i++) {
27         scanf("%d", a + i);
28         counter[a[i]]++;
29         pow2[i] = (pow2[i - 1] << 1) % moder;
30     }
31 }
32 
33 inline void solve() {
34     for(int i = 1; i < lim; i++)
35         for(int j = i; j < lim; j += i)
36             cnt[i] += counter[j];
37     
38     for(int i = lim - 1; i > 1; i--) {
39         if(!cnt[i])    continue; 
40         f[i] = (cnt[i] * 1LL * pow2[cnt[i] - 1]) % moder;
41         for(int j = i << 1; j < lim; j += i)
42             f[i] = (f[i] - f[j]) % moder;
43         if(f[i] < 0)    f[i] += moder;
44         res = (res + (f[i] * 1LL * i) % moder) % moder;
45     }
46     
47     printf("%d\n", res);
48 }
49 
50 int main() {
51     init();
52     solve();
53     return 0;
54 }

Codeforces 839D Winter is here - 暴力 - 容斥原理

标签:子集   ssi   ready   force   求导   and   some   pac   spec   

原文地址:http://www.cnblogs.com/yyf0309/p/7365402.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!