码迷,mamicode.com
首页 > 编程语言 > 详细

算法导论笔记——第十六章 贪心算法

时间:2017-08-21 17:03:01      阅读:351      评论:0      收藏:0      [点我收藏+]

标签:兼容   长度   高效   数据   贪心选择性质   文件的   笔记   节点   规划   

通常用于最优化问题,我们做出一组选择来达到最优解。每步都追求局部最优。对很多问题都能求得最优解,而且速度比动态规划方法快得多。

 

16.1 活动选择问题

按结束时间排序,然后选择兼容活动。

定理16.1 考虑任意非空子问题Sk,令am是Sk中结束时间最早的活动,则am在Sk的某个最大兼容活动子集中。

 

16.2 贪心算法原理

设计贪心算法步骤

1》将最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题需要求解。

2》证明作出贪心选择后,原问题总是存在最优解,即贪心选择总是安全的。

3》证明作出贪心选择后,剩余的子问题满足性质:其最优解与贪心选择组合即可得到原问题的最优解,这样就得到了最优子结构。

贪心选择性质

我们可以通过做出局部最优(贪心)选择来构造全局最优解。

动态规划:依赖子问题的解。自底向上或自顶向下,都需要先求解子问题。

贪心算法:进行选择时可能依赖之前的选择,但不依赖将来的选择或子问题的解。在进行第一次选择前不求解任何子问题。自顶向下。

如果进行贪心选择时我们不得不考虑众多选择,通常意味着可以改进贪心选择,使其更为高效。通过对输入进行预处理或者使用适合的数据结构(通常是优先队列),通常可使贪心选择更快速。

最优子结构

如果一个问题的最优解包含其子问题的最优解,则称此问题具有最优子结构性质。此性质是能否应用动态规划和贪心算法的关键要素。

贪心对动态规划

   0-1背包问题(动态规划)和分数背包问题(贪心算法)

 

16.3 赫夫曼编码

前缀码:没有任何码字是其他码字的前缀。前缀码可以保证达到最优数据压缩率。

文件的最优编码方案总是对应一棵满(full)二叉树。即每个非叶结点都有两个孩子结点(国内外教程定义不一致,国内还要求同时是完全二叉树)。

若C为字母表且所以字符的出现频率均为正数,则最优前缀码对应的树恰有|C|个叶节点,每个叶节点对应字母表中的一个字符,且恰有|C|-1个内部结点。

引理16.2 令C为一个字母表,其中每个字符c属于C都一个频率c.freq。令x和y是C中频率最低的两个字符。那么存在C的一个最优前缀码,x和y的码字长度相同,且只有最后一个二进制位不同。

引理16.3 令C为一个字母表,其中每个字符c属于C都一个频率c.freq。令x和y是C中频率最低的两个字符。令C‘为C去掉字符x和y,加入 一个新字符z后得到的字母表,即C‘=C-{x,y}U{z}。类似C,也为C‘定义freq,不同之处只是z.freq=x.freq+y.freq。令T‘为字母表C‘的任意一个最优前缀码对应的编码树。于是我们可以将T‘中叶节点z替换为一个以x和y为孩子的内部结点,得到树T,而T表示字母表C的一个最优前缀码。

 

16.4 拟阵和贪心算法

16.5 用拟阵求解任务调度问题

算法导论笔记——第十六章 贪心算法

标签:兼容   长度   高效   数据   贪心选择性质   文件的   笔记   节点   规划   

原文地址:http://www.cnblogs.com/justinh/p/6595865.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!