码迷,mamicode.com
首页 > 编程语言 > 详细

[数据结构与算法] : AVL树

时间:2017-09-10 10:04:49      阅读:250      评论:0      收藏:0      [点我收藏+]

标签:dma   upd   sorry   end   oid   插入   比较   size   stat   

头文件

 1 typedef int ElementType;
 2 
 3 #ifndef _AVLTREE_H_
 4 #define _AVLTREE_H_
 5 
 6 struct AvlNode;
 7 typedef struct AvlNode *Position;
 8 typedef struct AvlNode *AvlTree;
 9 
10 AvlTree MakeEmpty(AvlTree T);
11 Position Find(ElementType X, AvlTree T);
12 Position FindMin(AvlTree T);
13 Position FindMax(AvlTree T);
14 AvlTree Insert(ElementType X, AvlTree T);
15 AvlTree Delete(ElementType X, AvlTree T);
16 ElementType Retrieve(Position P);
17 void PrintTree(AvlTree T);
18 
19 #endif

 

源文件

  1 #include "fatal.h"
  2 #include "avltree.h"
  3 #include <malloc.h>
  4 
  5 struct AvlNode
  6 {
  7     ElementType Element;
  8     AvlTree Left;
  9     AvlTree Right;
 10     int     Height;
 11 };
 12 
 13 AvlTree MakeEmpty(AvlTree T) // 同二叉查找树
 14 {
 15     if(T != NULL) // 递归终止
 16     {
 17         MakeEmpty(T->Left);
 18         MakeEmpty(T->Right);
 19         free(T);
 20     }
 21     return T;
 22 }
 23 
 24 Position Find(ElementType X, AvlTree T) // 同二叉查找树
 25 {
 26     if(T == NULL)
 27         return NULL;
 28     else if(X < T->Element)
 29     {
 30         return Find(X, T->Left);
 31     }
 32     else if(X > T->Element)
 33     {
 34         return Find(X, T->Right);
 35     }
 36     else
 37         return T;
 38 }
 39 
 40 Position FindMin(AvlTree T) // 递归实现
 41 {
 42     if(T == NULL)
 43         return NULL;
 44     else if(T->Left == NULL)
 45         return T;
 46     else
 47         return FindMin(T->Left);
 48 }
 49 
 50 Position FindMax(AvlTree T) // 非递归实现
 51 {
 52     if(T != NULL)
 53         while(T->Right != NULL)
 54             T = T->Right;
 55 
 56     return T;
 57 }
 58 
 59 static int Height(Position P)
 60 {
 61     if(P == NULL)
 62         return -1; // 空树高度为-1
 63     else
 64         return P->Height;
 65 }
 66 
 67 static int Max(int Left, int Right)
 68 {
 69     return Left > Right ? Left : Right;
 70 }
 71 
 72 /* This function can be called only if K2 has a left child */
 73 /* Perform a rotate between a node (K2) and its left child */
 74 /* Update heights, then return new root */
 75 static Position SingleRotateWithLeft(Position K2)
 76 {
 77     Position K1;
 78 
 79     K1 = K2->Left;
 80     K2->Left = K1->Right;
 81     K1->Right = K2;
 82 
 83     K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
 84     K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
 85 
 86     return K1;  /* New root */
 87 }
 88 
 89 /* This function can be called only if K1 has a right child */
 90 /* Perform a rotate between a node (K1) and its right child */
 91 /* Update heights, then return new root */
 92 static Position SingleRotateWithRight(Position K1)
 93 {
 94     Position K2;
 95 
 96     K2 = K1->Right;
 97     K1->Right = K2->Left;
 98     K2->Left = K1;
 99 
100     K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
101     K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
102 
103     return K2;  /* New root */
104 }
105 
106 /* This function can be called only if K3 has a left */
107 /* child and K3‘s left child has a right child */
108 /* Do the left-right double rotation */
109 /* Update heights, then return new root */
110 static Position DoubleRotateWithLeft(Position K3)
111 {
112     /* Rotate between K1 and K2 */
113     K3->Left = SingleRotateWithRight(K3->Left);
114     /* Rotate between K3 and K2 */
115     return SingleRotateWithLeft(K3);
116 }
117 
118 /* This function can be called only if K1 has a right */
119 /* child and K1‘s right child has a left child */
120 /* Do the right-left double rotation */
121 /* Update heights, then return new root */
122 static Position DoubleRotateWithRight(Position K1)
123 {
124     /* Rotate between K3 and K2 */
125     K1->Right = SingleRotateWithLeft(K1->Right);
126     /* Rotate between K1 and K2 */
127     return SingleRotateWithRight(K1);
128 }
129 
130 // 1. 找位置; 2. 插入; 3. 平衡性; 4. 旋转
131 AvlTree Insert(ElementType X, AvlTree T)
132 {
133     if(T == NULL)
134     {
135         /* Create and return a one-node tree */
136         T = (AvlTree)malloc(sizeof(struct AvlNode));
137         if(T == NULL)
138             FatalError("Out of space!");
139         else
140         {
141             T->Left = T->Right = NULL;
142             T->Height = 0;
143             T->Element = X;
144         }
145     }
146     else if(X < T->Element)
147     {
148         T->Left = Insert(X, T->Left);
149         // 因为插到左边了, 所以肯定是左边比较高
150         if(Height(T->Left) - Height(T->Right) == 2)
151         {
152             if(X < T->Left->Element)
153                 T = SingleRotateWithLeft(T);
154             else
155                 T = DoubleRotateWithLeft(T);
156         }
157     }
158     else if(X > T->Element)
159     {
160         T->Right = Insert(X, T->Right);
161         // 插到右边了, 右边比较高
162         if(Height(T->Right) - Height(T->Left) == 2)
163         {
164             if(X > T->Right->Element)
165                 T = SingleRotateWithRight(T);
166             else
167                 T = DoubleRotateWithRight(T);
168         }
169     }
170     /* Else X is in the tree already; we‘ll do nothing */
171     T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
172 
173     return T;
174 }
175 
176 AvlTree Delete(ElementType X, AvlTree T)
177 {
178     printf( "Sorry; Delete is unimplemented; %d remains\n", X );
179     return T;
180 }
181 
182 ElementType Retrieve(Position P)
183 {
184     return P->Element;
185 }
186 
187 void PrintTree(AvlTree T)
188 {
189     if( T != NULL)
190     {
191         PrintTree(T->Left);
192         printf("%d ", T->Element);
193         PrintTree(T->Right);
194     }
195 }

 

测试文件

 1 #include "avltree.h"
 2 #include <stdio.h>
 3 
 4 main( )
 5 {
 6     AvlTree T;
 7     Position P;
 8     int i;
 9     int j = 0;
10 
11     T = MakeEmpty( NULL );
12     for( i = 0; i < 50; i++, j = ( j + 7 ) % 50 )
13         T = Insert( j, T );
14     for( i = 0; i < 50; i++ )
15         if( ( P = Find( i, T ) ) == NULL || Retrieve( P ) != i )
16             printf( "Error at %d\n", i );
17 
18  /* for( i = 0; i < 50; i += 2 )
19         T = Delete( i, T );
20 
21     for( i = 1; i < 50; i += 2 )
22         if( ( P = Find( i, T ) ) == NULL || Retrieve( P ) != i )
23             printf( "Error at %d\n", i );
24     for( i = 0; i < 50; i += 2 )
25         if( ( P = Find( i, T ) ) != NULL )
26             printf( "Error at %d\n", i );
27 */
28     printf( "Min is %d, Max is %d\n", Retrieve( FindMin( T ) ),
29                Retrieve( FindMax( T ) ) );
30     PrintTree(T);
31     return 0;
32 }

 

[数据结构与算法] : AVL树

标签:dma   upd   sorry   end   oid   插入   比较   size   stat   

原文地址:http://www.cnblogs.com/moon1992/p/7500076.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!