标签:string public 无法 数据 pac binary ini begin while
package other;
public class BinarySearch {
/*
* 循环实现二分查找算法arr 已排好序的数组x 需要查找的数-1 无法查到数据
*/
public static int binarySearch(int[] arr, int x) {
int low = 0;
int high = arr.length-1;
while(low <= high) {
int middle = (low + high)/2;
if(x == arr[middle]) {
return middle;
}else if(x <arr[middle]) {
high = middle - 1;
}else {
low = middle + 1;
}
}
return -1;
}
//递归实现二分查找
public static int binarySearch(int[] dataset,int data,int beginIndex,int endIndex){
int midIndex = (beginIndex+endIndex)/2;
if(data <dataset[beginIndex]||data>dataset[endIndex]||beginIndex>endIndex){
return -1;
}
if(data <dataset[midIndex]){
return binarySearch(dataset,data,beginIndex,midIndex-1);
}else if(data>dataset[midIndex]){
return binarySearch(dataset,data,midIndex+1,endIndex);
}else {
return midIndex;
}
}
public static void main(String[] args) {
int[] arr = { 6, 12, 33, 87, 90, 97, 108, 561 };
System.out.println("循环查找:" + (binarySearch(arr, 87) + 1));
System.out.println("递归查找"+binarySearch(arr,3,87,arr.length-1));
}
}
时间复杂度
比如:总共有n个元素,每次查找的区间大小就是n,n/2,n/4,…,n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数。
由于n/2^k取整后>=1,即令n/2^k=1,
可得k=log2n,(是以2为底,n的对数),所以时间复杂度可以表示O()=O(logn)
标签:string public 无法 数据 pac binary ini begin while
原文地址:http://www.cnblogs.com/Genesisx/p/7500364.html