码迷,mamicode.com
首页 > 编程语言 > 详细

Java实现红黑树

时间:2017-09-10 15:02:53      阅读:147      评论:0      收藏:0      [点我收藏+]

标签:black   minimum   推荐   理解   maximum   width   class   www.   color   

实现红黑树的编码,得先了解红黑树的性质,并结合性质理解红黑树的插入、删除等操作。这里推荐博客http://www.cnblogs.com/skywang12345/p/3245399.html,里面配有图文讲解,讲的非常详细具体。

以下是我自己封装实现的一个红黑树的类。

  1 package com.example.lenovo.linehough;
  2 
  3 public class GRBTree {
  4     int iCount;
  5     int[] treeValue;
  6     GRBTreeNode root;
  7     boolean BLACK = false;
  8     boolean RED = true;
  9 
 10     public GRBTree() {
 11         root = null;
 12     }
 13 
 14     public GRBTree(int i) {
 15         Free();
 16     }
 17 
 18     public class GRBTreeNode {
 19         int key;
 20         boolean color;
 21         GRBTreeNode left, right, parent;
 22 
 23         public GRBTreeNode(int newKey, boolean newColor, GRBTreeNode newLeft, GRBTreeNode newRight) {
 24             key = newKey;
 25             color = newColor;
 26             left = newLeft;
 27             right = newRight;
 28             if (left != null)
 29                 left.parent = this;
 30             if (right != null)
 31                 right.parent = this;
 32             parent = null;
 33         }
 34 
 35         public GRBTreeNode() {
 36             if (left != null)
 37                 left = null;
 38             if (right != null)
 39                 right = null;
 40         }
 41     }
 42 
 43     void Free() {
 44         if (root != null)
 45             root = null;
 46     }
 47 
 48     void Dereference() {
 49         root = null;
 50     }
 51 
 52     public GRBTreeNode Grandparent(GRBTreeNode n) {
 53         if (n == null || n.parent == null)
 54             return null;
 55         return n.parent.parent;
 56     }
 57 
 58     public GRBTreeNode Sibling(GRBTreeNode n) {
 59         if (n == null || n.parent == null)
 60             return null;
 61         if (n == n.parent.left)
 62             return n.parent.right;
 63         else
 64             return n.parent.left;
 65     }
 66 
 67     public GRBTreeNode Uncle(GRBTreeNode n) {
 68         if (n == null)
 69             return null;
 70         return Sibling(n.parent);
 71     }
 72 
 73     boolean ColorOf(GRBTreeNode n) {
 74         return n == null ? BLACK : n.color;
 75     }
 76 
 77     public GRBTreeNode Find(int keyToFind) {
 78         GRBTreeNode n = root;
 79         while (n != null) {
 80             if (keyToFind == n.key)
 81                 return n;
 82             if (keyToFind < n.key)
 83                 n = n.left;
 84             else
 85                 n = n.right;
 86         }
 87         return n;
 88     }
 89 
 90     void Replace(GRBTreeNode oldNode, GRBTreeNode newNode) {
 91         if (oldNode.parent == null)
 92             root = newNode;
 93         else {
 94             if (oldNode == oldNode.parent.left)
 95                 oldNode.parent.left = newNode;
 96             else
 97                 oldNode.parent.right = newNode;
 98         }
 99         if (newNode != null)
100             newNode.parent = oldNode.parent;
101     }
102 
103     void RotateLeft(GRBTreeNode n) {
104         GRBTreeNode r = n.right;
105         Replace(n, r);
106         n.right = r.left;
107         if (r.left != null)
108             r.left.parent = n;
109         r.left = n;
110         n.parent = r;
111     }
112 
113     void RotateRight(GRBTreeNode n) {
114         GRBTreeNode l = n.left;
115         Replace(n, l);
116         n.left = l.right;
117         if (l.right != null)
118             l.right.parent = n;
119         l.right = n;
120         n.parent = l;
121     }
122 
123     void Insert1(GRBTreeNode n) {
124         if (n.parent == null)
125             n.color = BLACK;
126         else
127             Insert2(n);
128     }
129 
130     void Insert2(GRBTreeNode n) {
131         if (n.parent.color != BLACK)
132             Insert3(n);
133     }
134 
135     void Insert3(GRBTreeNode n) {
136         GRBTreeNode u = Uncle(n);
137         GRBTreeNode g = Grandparent(n);
138         if (ColorOf(u) == RED) {
139             n.parent.color = BLACK;
140             u.color = BLACK;
141             g.color = RED;
142             Insert1(g);
143         } else
144             Insert4(n);
145     }
146 
147     void Insert4(GRBTreeNode n) {
148         GRBTreeNode g = Grandparent(n);
149         if (n == n.parent.right && n.parent == g.left) {
150             RotateLeft(n.parent);
151             n = n.left;
152         } else if (n == n.parent.left && n.parent == g.right) {
153             RotateRight(n.parent);
154             n = n.right;
155         }
156         Insert5(n);
157     }
158 
159     void Insert5(GRBTreeNode n) {
160         GRBTreeNode g = Grandparent(n);
161         n.parent.color = BLACK;
162         g.color = RED;
163         if (n == n.parent.left && n.parent == g.left)
164             RotateRight(g);
165         else
166             RotateLeft(g);
167     }
168 
169     boolean Insert(int newKey) {
170         GRBTreeNode insNode = new GRBTreeNode(newKey, RED, null, null);
171         GRBTreeNode n;
172 
173         if (root == null)
174             root = insNode;
175         else {
176             n = root;
177             while (true) {
178                 if (newKey == n.key) {
179                     return false;
180                 }
181 
182                 if (newKey < n.key) {
183                     if (n.left == null) {
184                         n.left = insNode;
185                         break;
186                     } else
187                         n = n.left;
188                 } else {
189                     if (n.right == null) {
190                         n.right = insNode;
191                         break;
192                     } else
193                         n = n.right;
194                 }
195             }
196             insNode.parent = n;
197         }
198 
199         Insert1(insNode);
200 
201         return true;
202     }
203 
204     public GRBTreeNode Maximum(GRBTreeNode n) {
205         if (n == null)
206             return null;
207 
208         while (n.right != null)
209             n = n.right;
210         return n;
211     }
212 
213     public GRBTreeNode Minimum(GRBTreeNode n) {
214         if (n == null)
215             return null;
216 
217         while (n.left != null)
218             n = n.left;
219         return n;
220     }
221 
222     void Delete1(GRBTreeNode n) {
223         if (n.parent != null)
224             Delete2(n);
225     }
226 
227     void Delete2(GRBTreeNode n) {
228         GRBTreeNode s = Sibling(n);
229 
230         if (ColorOf(s) == RED) {
231             n.parent.color = RED;
232             s.color = BLACK;
233 
234             if (n == n.parent.left) {
235                 RotateLeft(n.parent);
236             } else {
237                 RotateRight(n.parent);
238             }
239         }
240         Delete3(n);
241     }
242 
243     void Delete3(GRBTreeNode n) {
244         GRBTreeNode s = Sibling(n);
245 
246         if (ColorOf(n.parent) == BLACK && ColorOf(s) == BLACK &&
247                 ColorOf(s.left) == BLACK && ColorOf(s.right) == BLACK) {
248             s.color = RED;
249             Delete1(n.parent);
250         } else
251             Delete4(n);
252     }
253 
254     void Delete4(GRBTreeNode n) {
255         GRBTreeNode s = Sibling(n);
256 
257         if (ColorOf(n.parent) == RED && ColorOf(s) == BLACK &&
258                 ColorOf(s.left) == BLACK && ColorOf(s.right) == BLACK) {
259             s.color = RED;
260             n.parent.color = BLACK;
261         } else
262             Delete5(n);
263     }
264 
265     void Delete5(GRBTreeNode n) {
266         GRBTreeNode s = Sibling(n);
267 
268         if (n == n.parent.left &&
269                 ColorOf(s) == BLACK && ColorOf(s.left) == RED && ColorOf(s.right) == BLACK) {
270             s.color = RED;
271             s.left.color = BLACK;
272             RotateRight(s);
273         } else if (n == n.parent.right &&
274                 ColorOf(s) == BLACK && ColorOf(s.right) == RED && ColorOf(s.left) == BLACK) {
275             s.color = RED;
276             s.right.color = BLACK;
277             RotateLeft(s);
278         }
279         Delete6(n);
280     }
281 
282     void Delete6(GRBTreeNode n) {
283         GRBTreeNode s = Sibling(n);
284 
285         s.color = ColorOf(n.parent);
286         n.parent.color = BLACK;
287         if (n == n.parent.left) {
288             s.right.color = BLACK;
289             RotateLeft(n.parent);
290         } else {
291             s.left.color = BLACK;
292             RotateRight(n.parent);
293         }
294     }
295 
296     void Delete(int keyToDel) {
297         GRBTreeNode c;
298         GRBTreeNode n = Find(keyToDel);
299         if (n == null)
300             return;
301 
302         if (n.left != null && n.right != null) {
303             GRBTreeNode pred = Maximum(n.left);
304             n.key = pred.key;
305             n = pred;
306         }
307 
308         c = n.right == null ? n.left : n.right;
309         if (ColorOf(n) == BLACK) {
310             n.color = ColorOf(c);
311             Delete1(n);
312         }
313         Replace(n, c);
314         if (n.parent == null && c != null)
315             c.color = BLACK;
316 
317         n.left = null;
318         n.right = null;
319     }
320 
321     /*   前序遍历的结果放到一个数组里面*/
322     private void preOrder(GRBTreeNode n, int width, int height) {
323 
324         if (n != null) {
325             treeValue[iCount] = n.key;
326             iCount++;
327             preOrder(n.left, width, height);
328             preOrder(n.right, width, height);
329         }
330 
331     }
332 
333     public int[] preOrder(int width, int height) {
334         treeValue = new int[width * height];
335         iCount = 0;
336         preOrder(root, width, height);
337         return treeValue;
338     }
339 
340     public int getiCount() {
341         return iCount;
342     }
343 }

 

Java实现红黑树

标签:black   minimum   推荐   理解   maximum   width   class   www.   color   

原文地址:http://www.cnblogs.com/gxclmx/p/7500970.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!