码迷,mamicode.com
首页 > 编程语言 > 详细

R语言实战 - 高级数据管理(4)

时间:2017-09-17 15:08:32      阅读:306      评论:0      收藏:0      [点我收藏+]

标签:6.2   整合   blog   fun   port   sha   2.4   分享   ota   

6. 整合与重构

6.1 转置

> mtcars
                    mpg cyl disp  hp drat  wt qsec vs am gear carb
Mazda RX4            21   6  160 110  3.9 2.6   16  0  1    4    4
Mazda RX4 Wag        21   6  160 110  3.9 2.9   17  0  1    4    4
Datsun 710           23   4  108  93  3.8 2.3   19  1  1    4    1
Hornet 4 Drive       21   6  258 110  3.1 3.2   19  1  0    3    1
Hornet Sportabout    19   8  360 175  3.1 3.4   17  0  0    3    2
Valiant              18   6  225 105  2.8 3.5   20  1  0    3    1
Duster 360           14   8  360 245  3.2 3.6   16  0  0    3    4
Merc 240D            24   4  147  62  3.7 3.2   20  1  0    4    2
Merc 230             23   4  141  95  3.9 3.1   23  1  0    4    2
Merc 280             19   6  168 123  3.9 3.4   18  1  0    4    4
Merc 280C            18   6  168 123  3.9 3.4   19  1  0    4    4
Merc 450SE           16   8  276 180  3.1 4.1   17  0  0    3    3
Merc 450SL           17   8  276 180  3.1 3.7   18  0  0    3    3
Merc 450SLC          15   8  276 180  3.1 3.8   18  0  0    3    3
Cadillac Fleetwood   10   8  472 205  2.9 5.2   18  0  0    3    4
Lincoln Continental  10   8  460 215  3.0 5.4   18  0  0    3    4
Chrysler Imperial    15   8  440 230  3.2 5.3   17  0  0    3    4
Fiat 128             32   4   79  66  4.1 2.2   19  1  1    4    1
Honda Civic          30   4   76  52  4.9 1.6   19  1  1    4    2
Toyota Corolla       34   4   71  65  4.2 1.8   20  1  1    4    1
Toyota Corona        22   4  120  97  3.7 2.5   20  1  0    3    1
Dodge Challenger     16   8  318 150  2.8 3.5   17  0  0    3    2
AMC Javelin          15   8  304 150  3.1 3.4   17  0  0    3    2
Camaro Z28           13   8  350 245  3.7 3.8   15  0  0    3    4
Pontiac Firebird     19   8  400 175  3.1 3.8   17  0  0    3    2
Fiat X1-9            27   4   79  66  4.1 1.9   19  1  1    4    1
Porsche 914-2        26   4  120  91  4.4 2.1   17  0  1    5    2
Lotus Europa         30   4   95 113  3.8 1.5   17  1  1    5    2
Ford Pantera L       16   8  351 264  4.2 3.2   14  0  1    5    4
Ferrari Dino         20   6  145 175  3.6 2.8   16  0  1    5    6
Maserati Bora        15   8  301 335  3.5 3.6   15  0  1    5    8
Volvo 142E           21   4  121 109  4.1 2.8   19  1  1    4    2
> 
> 
> cars <- mtcars[1:5, 1:4]
> cars
                  mpg cyl disp  hp
Mazda RX4          21   6  160 110
Mazda RX4 Wag      21   6  160 110
Datsun 710         23   4  108  93
Hornet 4 Drive     21   6  258 110
Hornet Sportabout  19   8  360 175
> t(cars)
     Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout
mpg         21            21         23             21                19
cyl          6             6          4              6                 8
disp       160           160        108            258               360
hp         110           110         93            110               175
> 

6.2 整合数据

> options(digits=3)
> attach(mtcars)
> aggdata <- aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
> aggdata
  Group.1 Group.2  mpg cyl disp  hp drat   wt qsec  vs   am gear carb
1       4       3 21.5   4  120  97 3.70 2.46 20.0 1.0 0.00    3 1.00
2       6       3 19.8   6  242 108 2.92 3.34 19.8 1.0 0.00    3 1.00
3       8       3 15.1   8  358 194 3.12 4.10 17.1 0.0 0.00    3 3.08
4       4       4 26.9   4  103  76 4.11 2.38 19.6 1.0 0.75    4 1.50
5       6       4 19.8   6  164 116 3.91 3.09 17.7 0.5 0.50    4 4.00
6       4       5 28.2   4  108 102 4.10 1.83 16.8 0.5 1.00    5 2.00
7       6       5 19.7   6  145 175 3.62 2.77 15.5 0.0 1.00    5 6.00
8       8       5 15.4   8  326 300 3.88 3.37 14.6 0.0 1.00    5 6.00
> 

6.3 reshape包

技术分享

> ID <- c(1,1,2,2)
> Time <- c(1,2,1,2)
> X1 <- c(5,3,6,2)
> X2 <- c(6,5,1,4)
> mydata <- data.frame(ID, Time, X1, X2)
> mydata
  ID Time X1 X2
1  1    1  5  6
2  1    2  3  5
3  2    1  6  1
4  2    2  2  4

6.3.1 融合

> library(reshape)
> md <- melt(mydata, id=(c("ID", "Time")))
> md
  ID Time variable value
1  1    1       X1     5
2  1    2       X1     3
3  2    1       X1     6
4  2    2       X1     2
5  1    1       X2     6
6  1    2       X2     5
7  2    1       X2     1
8  2    2       X2     4
> 

6.3.2 重铸

技术分享

> library(reshape)
> md <- melt(mydata, id=c("id","time"))
> md
  id time variable value
1  1    1       x1     5
2  1    2       x1     3
3  2    1       x1     6
4  2    2       x1     2
5  1    1       x2     6
6  1    2       x2     5
7  2    1       x2     1
8  2    2       x2     4
> cast(md, id~variable, mean)
  id x1  x2
1  1  4 5.5
2  2  4 2.5
> cast(md, time~variable, mean)
  time  x1  x2
1    1 5.5 3.5
2    2 2.5 4.5
> cast(md, id~time, mean)
  id   1 2
1  1 5.5 4
2  2 3.5 3
> cast(md, id+time~variable)
  id time x1 x2
1  1    1  5  6
2  1    2  3  5
3  2    1  6  1
4  2    2  2  4
> cast(md, id+variable~time)
  id variable 1 2
1  1       x1 5 3
2  1       x2 6 5
3  2       x1 6 2
4  2       x2 1 4
> cast(md, id+variable~time)
  id variable 1 2
1  1       x1 5 3
2  1       x2 6 5
3  2       x1 6 2
4  2       x2 1 4
> cast(md, id~variable+time)
  id x1_1 x1_2 x2_1 x2_2
1  1    5    3    6    5
2  2    6    2    1    4
> 

 

R语言实战 - 高级数据管理(4)

标签:6.2   整合   blog   fun   port   sha   2.4   分享   ota   

原文地址:http://www.cnblogs.com/wnzhong/p/7535344.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!