标签:打破 排序算法 order 复杂度 body style dash tab time
众所周知,猴子排序打破了排序算法$O(n\log_{2}{n})$的桎梏(雾),具体的话,显然最好情况一次成功就是$O(n)$,最坏情况那就$O(+\infty)$了。期望是多少呢?让我来推导一番(逃)。
首先,每次打乱序列和检测是否有序为$O(n)$,每次成功的概率为$\frac{1}{n!}$(全排列共$n!$种),失败的概率为$1-\frac{1}{n!}$。我们令$X$为排序成功所需的打乱次数,则$P(X=k)=P_{成功}^{1}×P_{失败}^{k-1}$(乘法原理)。分布列如下表所示——
$X$ | $1$ | $2$ | $3$ | $\cdots$ | $k$ | $\cdots$ | $+\infty$ |
$P(X=k)$ | $\frac{1}{n!}$ | $\left(1-\frac{1}{n!}\right)^{2-1}×\frac{1}{n!}$ | $\left(1-\frac{1}{n!}\right)^{3-1}×\frac{1}{n!}$ | $\cdots$ | $\left(1-\frac{1}{n!}\right)^{k-1}×\frac{1}{n!}$ | $\cdots$ | $+\infty$ |
有了分布列就来求X的期望吧——
$$E(X)=1×\frac{1}{n!}+2×\left(1-\frac{1}{n!}\right)^{2-1}×\frac{1}{n!}+3×\left(1-\frac{1}{n!}\right)^{3-1}×\frac{1}{n!}+\cdots+k×\left(1-\frac{1}{n!}\right)^{k-1}×\frac{1}{n!}+\cdots$$
$$=\frac{1}{n!}×\left[1×\left(1-\frac{1}{n!}\right)^{0}+2×\left(1-\frac{1}{n!}\right)^{1}+3×\left(1-\frac{1}{n!}\right)^{2}+\cdots+k×\left(1-\frac{1}{n!}\right)^{k-1}+\cdots\right]$$
$$=\frac{1}{n!}×\sum_{i=1}^{\infty}{i×\left(1-\frac{1}{n!}\right)^{i-1}}$$
标签:打破 排序算法 order 复杂度 body style dash tab time
原文地址:http://www.cnblogs.com/wawcac-blog/p/7589235.html