标签:des roo height coding == log turn modified odi
# coding:utf-8 # 列表嵌套法 def BinaryTree(r): return [r, [], []] def insertLeft(root, newBranch): t = [] if root != []: t = root.pop(1) if len(t) > 1: root.insert(1, [newBranch, t, []]) else: root.insert(1, [newBranch, [], []]) return root def insertRight(root, newBranch): t = [] if root != []: t = root.pop(2) if len(t) > 1: root.insert(2, [newBranch, [], t]) else: root.insert(2, [newBranch, [], []]) return root def getRootVal(root): return root[0] def setRootVal(root, newVal): root[0] = newVal def getLeftChild(root): return root[1] def getRightChild(root): return root[2] if __name__ == ‘__main__‘: r = BinaryTree(‘a‘) insertLeft(r, ‘b‘) insertRight(r, ‘c‘) insertRight(getLeftChild(r), ‘d‘) insertLeft(getRightChild(getRightChild(r)), ‘e‘) print(r)
class BinaryTree: """ A recursive implementation of Binary Tree Using links and Nodes approach. Modified to allow for trees to be constructed from other trees rather than always creating a new tree in the insertLeft or insertRight """ def __init__(self,rootObj): self.key = rootObj self.leftChild = None self.rightChild = None def insertLeft(self,newNode): if isinstance(newNode, BinaryTree): t = newNode else: t = BinaryTree(newNode) if self.leftChild is not None: t.left = self.leftChild self.leftChild = t def insertRight(self,newNode): if isinstance(newNode,BinaryTree): t = newNode else: t = BinaryTree(newNode) if self.rightChild is not None: t.right = self.rightChild self.rightChild = t def isLeaf(self): return ((not self.leftChild) and (not self.rightChild)) def getRightChild(self): return self.rightChild def getLeftChild(self): return self.leftChild def setRootVal(self,obj): self.key = obj def getRootVal(self,): return self.key def inorder(self): if self.leftChild: self.leftChild.inorder() print(self.key) if self.rightChild: self.rightChild.inorder() def postorder(self): if self.leftChild: self.leftChild.postorder() if self.rightChild: self.rightChild.postorder() print(self.key) def preorder(self): print(self.key) if self.leftChild: self.leftChild.preorder() if self.rightChild: self.rightChild.preorder() def printexp(self): if self.leftChild: print(‘(‘, end=‘ ‘) self.leftChild.printexp() print(self.key, end=‘ ‘) if self.rightChild: self.rightChild.printexp() print(‘)‘, end=‘ ‘) def postordereval(self): opers = {‘+‘:operator.add, ‘-‘:operator.sub, ‘*‘:operator.mul, ‘/‘:operator.truediv} res1 = None res2 = None if self.leftChild: res1 = self.leftChild.postordereval() #// \label{peleft} if self.rightChild: res2 = self.rightChild.postordereval() #// \label{peright} if res1 and res2: return opers[self.key](res1,res2) #// \label{peeval} else: return self.key def inorder(tree): if tree != None: inorder(tree.getLeftChild()) print(tree.getRootVal()) inorder(tree.getRightChild()) def printexp(tree): if tree.leftChild: print(‘(‘, end=‘ ‘) printexp(tree.getLeftChild()) print(tree.getRootVal(), end=‘ ‘) if tree.rightChild: printexp(tree.getRightChild()) print(‘)‘, end=‘ ‘) def printexp(tree): sVal = "" if tree: sVal = ‘(‘ + printexp(tree.getLeftChild()) sVal = sVal + str(tree.getRootVal()) sVal = sVal + printexp(tree.getRightChild()) + ‘)‘ return sVal def postordereval(tree): opers = {‘+‘:operator.add, ‘-‘:operator.sub, ‘*‘:operator.mul, ‘/‘:operator.truediv} res1 = None res2 = None if tree: res1 = postordereval(tree.getLeftChild()) #// \label{peleft} res2 = postordereval(tree.getRightChild()) #// \label{peright} if res1 and res2: return opers[tree.getRootVal()](res1,res2) #// \label{peeval} else: return tree.getRootVal() def height(tree): if tree == None: return -1 else: return 1 + max(height(tree.leftChild),height(tree.rightChild))
标签:des roo height coding == log turn modified odi
原文地址:http://www.cnblogs.com/jasonhaven/p/7622173.html