标签:hello ada att containe exit http 发送 它的 sum
本文主要讲一下C++多线程
·使用线程可以把占据长时间的程序中的任务放到后台去处理
·程序的运行速度可能加快
可以释放一些珍贵的资源如内存占用等等。
但是多线程是为了同步完成多项任务,不是为了提高运行效率,而是为了提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。
首先 我们现在在学校使用的和大赛使用的C++编程软件一般都是codeblocks(湖南省比赛是的,其他就不知道了)
但是在CodeBlocks中间 我们是不能直接使用线程的 需要设置一下
线程的头文件与现场创建格式
#include <pthread.h>
pthread_create (thread, attr, start_routine, arg)
在这里,pthread_create
创建一个新的线程,并让它可执行。下面是关于参数的说明:
参数 | 说明 |
---|---|
thread | 指向线程标识符指针。保存的是线程id |
attr | 一个不透明的属性对象,可以被用来设置线程属性。您可以指定线程属性对象,也可以使用默认值 NULL。 |
start_routine | 线程运行函数起始地址,即线程函数名。 |
arg | 运行函数的参数。它必须通过把引用作为指针强制转换为 void 类型进行传递。如果没有传递参数,则使用 NULL。 |
创建线程成功时,函数返回 0,若返回值不为 0 则说明创建线程失败。
线程有创建 自然也就有结束
下面介绍一下结束线程的方法:
使用下面的方法 我们可以结束线程
#include <pthread.h>
pthread_exit (status);
在这里,pthread_exit
用于显式地退出一个线程。通常情况下,pthread_exit() 函数是在线程完成工作后无需继续存在时被调用。
注意,main()函数是一个进程,也是可以使用上面的函数去结束它的。如果 main() 是在它所创建的线程之前结束,并通过 pthread_exit() 退出,那么其他线程将继续执行。否则,它们将在 main() 结束时自动被终止。
下面以一个实例来说明一下main()函数是否通过 pthread_exit() 退出的不同 下面是代码
#include <iostream> #include <pthread.h> using namespace std; #define NUM_THREADS 5 void* say_hello(void* args) { cout << "Hello Runoob!" << endl; } int main() { pthread_t tids[NUM_THREADS];// 定义线程的 id 变量,多个变量使用数组 for(int i = 0; i < NUM_THREADS; ++i) { //参数依次是:创建的线程id,线程参数,调用的函数,传入的函数参数 pthread_create(&tids[i], NULL, say_hello, NULL); } //等各个线程退出后,进程才结束,否则进程强制结束了,线程可能还没反应过来; pthread_exit(NULL);//俩次运行的不同之处在于有没有这一行 }
//有这一行的运行结果 Hello Runoob!Hello Runoob! Hello Runoob! Hello Runoob! Hello Runoob! //上面是一种结果 由于多个线程之间是同步的 所以输出结果可以有多种 下面是我第二次运行的结果 Hello Runoob!Hello Runoob! Hello Runoob! Hello Runoob! Hello Runoob!
//没有这一行的运行结果 Hello Runoob! //5个线程仅仅只有一个运行完成 其他4个直接中断运行 //同样的 运行结果会有其他的情况 下面是我第二次的运行结果 Hello Runoob!Hello Runoob! Hello Runoob! Hello Runoob!
以下简单的实例代码使用 pthread_create() 函数创建了 5 个线程,并接收传入的参数。每个线程打印一个 "Hello Runoob!" 消息,并输出接收的参数,然后调用 pthread_exit() 终止线程。
//文件名:test.cpp
#include <iostream> #include <cstdlib> #include <pthread.h> using namespace std; #define NUM_THREADS 5 void *PrintHello(void *threadid) { // 对传入的参数进行强制类型转换,由无类型指针变为整形数指针,然后再读取 int tid = *((int*)threadid); cout << "Hello Runoob! 线程 ID, " << tid << endl; pthread_exit(NULL); } int main () { pthread_t threads[NUM_THREADS]; int indexes[NUM_THREADS];// 用数组来保存i的值 int rc; int i; for( i=0; i < NUM_THREADS; i++ ){ cout << "main() : 创建线程, " << i << endl; indexes[i] = i; //先保存i的值 // 传入的时候必须强制转换为void* 类型,即无类型指针 rc = pthread_create(&threads[i], NULL, PrintHello, (void *)&(indexes[i])); if (rc){ cout << "Error:无法创建线程," << rc << endl; exit(-1); } } pthread_exit(NULL); }
现在编译并执行程序,将产生下列结果:
main() : 创建线程, 0 main() : 创建线程, 1 main() : 创建线程, 2 main() : 创建线程, 3 main() : 创建线程, 4 Hello Runoob! 线程 ID, 4 Hello Runoob! 线程 ID, 3 Hello Runoob! 线程 ID, 2 Hello Runoob! 线程 ID, 1 Hello Runoob! 线程 ID, 0
这个实例演示了如何通过结构传递多个参数。您可以在线程回调中传递任意的数据类型,因为它指向 void,如下面的实例所示:
#include <iostream> #include <cstdlib> #include <pthread.h> using namespace std; #define NUM_THREADS 5 struct thread_data{ int thread_id; char *message; }; void *PrintHello(void *threadarg) { struct thread_data *my_data; my_data = (struct thread_data *) threadarg; cout << "Thread ID : " << my_data->thread_id ; cout << " Message : " << my_data->message << endl; pthread_exit(NULL); } int main () { pthread_t threads[NUM_THREADS]; struct thread_data td[NUM_THREADS]; int rc; int i; for( i=0; i < NUM_THREADS; i++ ){ cout <<"main() : creating thread, " << i << endl; td[i].thread_id = i; td[i].message = "This is message"; rc = pthread_create(&threads[i], NULL, PrintHello, (void *)&td[i]); //传入到参数必须强转为void*类型,即无类型指针 if (rc){ cout << "Error:unable to create thread," << rc << endl; exit(-1); } } pthread_exit(NULL); }
当上面的代码被编译和执行时,它会产生下列结果:
main() : creating thread, 0 main() : creating thread, 1 main() : creating thread, 2 main() : creating thread, 3 main() : creating thread, 4 Thread ID : 3 Message : This is message Thread ID : 2 Message : This is message Thread ID : 0 Message : This is message Thread ID : 1 Message : This is message Thread ID : 4 Message : This is message
我们可以使用以下两个函数来连接或分离线程:
pthread_join (threadid, status)
pthread_detach (threadid)
pthread_join()
子程序阻碍调用程序,直到指定的 threadid
线程终止为止。当创建一个线程时,它的某个属性会定义它是否是可连接的(joinable)或可分离的(detached)。只有创建时定义为可连接的线程才可以被连接。如果线程创建时被定义为可分离的,则它永远也不能被连接。
这个实例演示了如何使用 pthread_join() 函数来等待线程的完成。
#include <iostream> #include <cstdlib> #include <pthread.h> #include <unistd.h> using namespace std; #define NUM_THREADS 5 void *wait(void *t) { int i; long tid; tid = (long)t; sleep(1); cout << "Sleeping in thread " << endl; cout << "Thread with id : " << tid << " ...exiting " << endl; pthread_exit(NULL); } int main () { int rc; int i; pthread_t threads[NUM_THREADS]; pthread_attr_t attr; void *status; // 初始化并设置线程为可连接的(joinable) pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); for( i=0; i < NUM_THREADS; i++ ){ cout << "main() : creating thread, " << i << endl; rc = pthread_create(&threads[i], NULL, wait, (void *)i ); if (rc){ cout << "Error:unable to create thread," << rc << endl; exit(-1); } } // 删除属性,并等待其他线程 pthread_attr_destroy(&attr); for( i=0; i < NUM_THREADS; i++ ){ rc = pthread_join(threads[i], &status); if (rc){ cout << "Error:unable to join," << rc << endl; exit(-1); } cout << "Main: completed thread id :" << i ; cout << " exiting with status :" << status << endl; } cout << "Main: program exiting." << endl; pthread_exit(NULL); }
当上面的代码被编译和执行时,它会产生下列结果:
main() : creating thread, 0 main() : creating thread, 1 main() : creating thread, 2 main() : creating thread, 3 main() : creating thread, 4 Sleeping in thread Thread with id : 4 ...exiting Sleeping in thread Thread with id : 3 ...exiting Sleeping in thread Thread with id : 2 ...exiting Sleeping in thread Thread with id : 1 ...exiting Sleeping in thread Thread with id : 0 ...exiting Main: completed thread id :0 exiting with status :0 Main: completed thread id :1 exiting with status :0 Main: completed thread id :2 exiting with status :0 Main: completed thread id :3 exiting with status :0 Main: completed thread id :4 exiting with status :0 Main: program exiting.
互斥锁是实现线程同步的一种机制,只要在临界区前后对资源加锁就能阻塞其他进程的访问。
#include <iostream> #include <pthread.h> using namespace std; #define NUM_THREADS 5 int sum = 0; //定义全局变量,让所有线程同时写,这样就需要锁机制 pthread_mutex_t sum_mutex; //互斥锁 void* say_hello( void* args ) { cout << "hello in thread " << *(( int * )args) << endl; pthread_mutex_lock( &sum_mutex ); //先加锁,再修改sum的值,锁被占用就阻塞,直到拿到锁再修改sum; cout << "before sum is " << sum << " in thread " << *( ( int* )args ) << endl; sum += *( ( int* )args ); cout << "after sum is " << sum << " in thread " << *( ( int* )args ) << endl; pthread_mutex_unlock( &sum_mutex ); //释放锁,供其他线程使用 pthread_exit( 0 ); } int main() { pthread_t tids[NUM_THREADS]; int indexes[NUM_THREADS]; pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数 pthread_attr_init( &attr ); //初始化 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能 pthread_mutex_init( &sum_mutex, NULL ); //对锁进行初始化 for( int i = 0; i < NUM_THREADS; ++i ) { indexes[i] = i; int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) ); //5个进程同时去修改sum if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } } pthread_attr_destroy( &attr ); //释放内存 void *status; for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_join( tids[i], &status ); //主程序join每个线程后取得每个线程的退出信息status if( ret != 0 ) { cout << "pthread_join error:error_code=" << ret << endl; } } cout << "finally sum is " << sum << endl; pthread_mutex_destroy( &sum_mutex ); //注销锁 }
测试结果:
hello in thread hello in thread 1hello in thread 3 0 hello in thread 2 before sum is 0 in thread 1 hello in thread 4 after sum is 1 in thread 1 before sum is 1 in thread 3 after sum is 4 in thread 3 before sum is 4 in thread 4 after sum is 8 in thread 4 before sum is 8 in thread 0 after sum is 8 in thread 0 before sum is 8 in thread 2 after sum is 10 in thread 2 finally sum is 10
可知,sum的访问和修改顺序是正常的,这就达到了多线程的目的了,但是线程的运行顺序是混乱的,混乱就是正常?
信号量是线程同步的另一种实现机制,信号量的操作有signal
和wait
,本例子采用条件信号变量
pthread_cond_t tasks_cond;
信号量的实现也要给予锁机制。
#include <iostream> #include <pthread.h> #include <stdio.h> using namespace std; #define BOUNDARY 5 int tasks = 10; pthread_mutex_t tasks_mutex; //互斥锁 pthread_cond_t tasks_cond; //条件信号变量,处理两个线程间的条件关系,当task>5,hello2处理,反之hello1处理,直到task减为0 void* say_hello2( void* args ) { pthread_t pid = pthread_self(); //获取当前线程id cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl; bool is_signaled = false; //sign while(1) { pthread_mutex_lock( &tasks_mutex ); //加锁 if( tasks > BOUNDARY ) { cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl; --tasks; //modify } else if( !is_signaled ) { cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl; pthread_cond_signal( &tasks_cond ); //signal:向hello1发送信号,表明已经>5 is_signaled = true; //表明信号已发送,退出此线程 } pthread_mutex_unlock( &tasks_mutex ); //解锁 if( tasks == 0 ) break; } } void* say_hello1( void* args ) { pthread_t pid = pthread_self(); //获取当前线程id cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl; while(1) { pthread_mutex_lock( &tasks_mutex ); //加锁 if( tasks > BOUNDARY ) { cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl; pthread_cond_wait( &tasks_cond, &tasks_mutex ); //wait:等待信号量生效,接收到信号,向hello2发出信号,跳出wait,执行后续 } else { cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl; --tasks; } pthread_mutex_unlock( &tasks_mutex ); //解锁 if( tasks == 0 ) break; } } int main() { pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数 pthread_attr_init( &attr ); //初始化 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能 pthread_cond_init( &tasks_cond, NULL ); //初始化条件信号量 pthread_mutex_init( &tasks_mutex, NULL ); //初始化互斥量 pthread_t tid1, tid2; //保存两个线程id int index1 = 1; int ret = pthread_create( &tid1, &attr, say_hello1, ( void* )&index1 ); if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } int index2 = 2; ret = pthread_create( &tid2, &attr, say_hello2, ( void* )&index2 ); if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } pthread_join( tid1, NULL ); //连接两个线程 pthread_join( tid2, NULL ); pthread_attr_destroy( &attr ); //释放内存 pthread_mutex_destroy( &tasks_mutex ); //注销锁 pthread_cond_destroy( &tasks_cond ); //正常退出 }
测试结果:
先在线程2中执行say_hello2,再跳转到线程1中执行say_hello1,直到tasks减到0为止。
[2] hello in thread 1 [2] pthread_cond_signal in thread 1 [3] hello in thread 2 [3] take task: 10 in thread 2 [3] take task: 9 in thread 2 [3] take task: 8 in thread 2 [3] take task: 7 in thread 2 [3] take task: 6 in thread 2 [3] pthread_cond_signal in thread 2 [2] take task: 5 in thread 1 [2] take task: 4 in thread 1 [2] take task: 3 in thread 1 [2] take task: 2 in thread 1 [2] take task: 1 in thread 1
初学多线程 这个文章中间的线程参数传递存在问题 每一次运行存在参数中有int行的数据
程序就会boom boom boom
但是我不知道是为什么
希望各位大佬可以告诉我为什么 或者是你们电脑上面没有问题0.0
多线程的同步机制 所以有一些运行结果不是一样也不用在意 你多运行几次 说不定就有一次的运行结果和我的是一样的了
此文转+改,http://www.cnblogs.com/quincyhu/p/5884361.html
C/C++ 多线程(程序猿面试重点)CodeBlocks-CB的pthreads使用
标签:hello ada att containe exit http 发送 它的 sum
原文地址:http://www.cnblogs.com/52why/p/7629285.html