码迷,mamicode.com
首页 > 编程语言 > 详细

【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

时间:2017-10-06 10:37:27      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:pen   pac   kruscal   并查集   cpp   algorithm   i+1   除了   back   

题意:求一个图的最小生成树个数。

矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值。

度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是0。

邻接矩阵G[i][j]的值为i与j之间的边数(重边要记入)。

一个定理:一个图的所有MST中,相同权值的边数肯定是相等的。

于是将边从小到大排序之后,根据权值划分阶段,将之前的点全缩点,这一阶段的边中仅考虑当前权值的边,然后把图划分成多个连通块,对每个连通块使用矩阵树定理求生成树个数,该阶段的值就是所有连通块乘起来。然后最终答案就是所有阶段的值乘起来。

缩点使用了动态维护并查集的方法。

无法求出生成树的情况要特判。

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
typedef vector<int>::iterator ITER;
vector<int>bel[105];
int v[2005],first[105],next[2005],w[2005],e;
void AddEdge(int U,int V,int W){
	v[++e]=V;
	w[e]=W;
	next[e]=first[U];
	first[U]=e;
}
int fa[105];
int find(int x){
	return x==fa[x] ? x : fa[x]=find(fa[x]);
}
const int MOD=31011;
struct Edge{
	int u,v,w;
	Edge(const int &u,const int &v,const int &w){
		this->u=u;
		this->v=v;
		this->w=w;
	}
	Edge(){}
	void read(){
		scanf("%d%d%d",&u,&v,&w);
	}
}es[1005];
bool cmp(const Edge &a,const Edge &b){
	return a.w<b.w;
}
int n,m;
bool vis[105];
int num[105],p,now,A[105][105],ans=1;
void dfs(int U){
	num[U]=++p;
	vis[U]=1;
	for(ITER it=bel[U].begin();it!=bel[U].end();++it){
		for(int i=first[*it];i;i=next[i]){
			int V;
			if(w[i]==now && (V=find(v[i]))!=U){
//				printf("%d %d\n",U,V);
				if(!vis[V]){
					dfs(V);
				}
				++A[num[V]][num[V]];
				A[num[U]][num[V]]=(A[num[U]][num[V]]-1+MOD)%MOD;
			}
		}
	}
}
int N;
int guass_jordan()
{
    int res=1;
    for(int i=1;i<=N;i++){
        for (int j=i+1;j<=N;j++){
            int a=A[i][i],b=A[j][i];
            while(b)
            {
                int t=a/b;
				a%=b;
				swap(a,b);
                for(int k=i;k<=N;k++){
                	A[i][k]=(A[i][k]-A[j][k]*t%MOD+MOD)%MOD;
				}
                for(int k=i;k<=N;k++){
                	swap(A[i][k],A[j][k]);
                }
                res=res*(MOD-1)%MOD;
            }
        }
        if(!A[i][i]){
        	return 0;
		}
        res=(res*A[i][i])%MOD;
    }
    return res;
}
int tot;
int main(){
//	freopen("bzoj1016.in","r",stdin);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i){
		fa[i]=i;
		bel[i].push_back(i);
	}
	for(int i=1;i<=m;++i){
		es[i].read();
		AddEdge(es[i].u,es[i].v,es[i].w);
		AddEdge(es[i].v,es[i].u,es[i].w);
	}
	sort(es+1,es+m+1,cmp);
	for(int i=1;i<=m;++i){
		if(es[i].w!=es[i-1].w){
			now=es[i].w;
			memset(vis,0,sizeof(vis));
			for(int j=1;j<=n;++j){
				if(j==fa[j] && !vis[j]){
					p=0;
					memset(num,0,sizeof(num));
					dfs(j);
					N=p-1;
					ans=ans*guass_jordan()%MOD;
					for(int k=1;k<=p;++k){
						for(int l=1;l<=p;++l){
							A[k][l]=0;
						}
					}
				}
			}
		}
		int f1=find(es[i].u),f2=find(es[i].v);
		if(f1!=f2){
			fa[f1]=f2;
			++tot;
			for(ITER it=bel[f1].begin();it!=bel[f1].end();++it){
				bel[f2].push_back(*it);
			}
			bel[f1].clear();
		}
	}
	printf("%d\n",tot==n-1 ? ans : 0);
	return 0;
}

【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

标签:pen   pac   kruscal   并查集   cpp   algorithm   i+1   除了   back   

原文地址:http://www.cnblogs.com/autsky-jadek/p/7630373.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!