标签:col repo ports ini iostream stop iso mes nta
// Author: John McCullock // Date: 10-15-05 // Description: Elman Network Example 1. //http://www.mnemstudio.org/neural-networks-elman.htm #include <iostream> #include <iomanip> #include <cmath> #include <string> #include <ctime> #include <cstdlib> using namespace std; const int maxTests = 10000; const int maxSamples = 4; const int inputNeurons = 6; const int hiddenNeurons = 3; const int outputNeurons = 6; const int contextNeurons = 3; const double learnRate = 0.2; //Rho. const int trainingReps = 2000; //beVector is the symbol used to start or end a sequence. double beVector[inputNeurons] = {1.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // 0 1 2 3 4 5 double sampleInput[3][inputNeurons] = {{0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}}; //Input to Hidden weights (with biases). double wih[inputNeurons + 1][hiddenNeurons]; //Context to Hidden weights (with biases). double wch[contextNeurons + 1][hiddenNeurons]; //Hidden to Output weights (with biases). double who[hiddenNeurons + 1][outputNeurons]; //Hidden to Context weights (no biases). double whc[outputNeurons + 1][contextNeurons]; //Activations. double inputs[inputNeurons]; double hidden[hiddenNeurons]; double target[outputNeurons]; double actual[outputNeurons]; double context[contextNeurons]; //Unit errors. double erro[outputNeurons]; double errh[hiddenNeurons]; void ElmanNetwork(); void testNetwork(); void feedForward(); void backPropagate(); void assignRandomWeights(); int getRandomNumber(); double sigmoid(double val); double sigmoidDerivative(double val); int main(){ cout << fixed << setprecision(3) << endl; //Format all the output. srand((unsigned)time(0)); //Seed random number generator with system time. ElmanNetwork(); testNetwork(); return 0; } void ElmanNetwork(){ double err; int sample = 0; int iterations = 0; bool stopLoop = false; assignRandomWeights(); //Train the network. do { if(sample == 0){ for(int i = 0; i <= (inputNeurons - 1); i++){ inputs[i] = beVector[i]; } // i } else { for(int i = 0; i <= (inputNeurons - 1); i++){ inputs[i] = sampleInput[sample - 1][i]; } // i } //After the samples are entered into the input units, the sample are //then offset by one and entered into target-output units for //later comparison. if(sample == maxSamples - 1){ for(int i = 0; i <= (inputNeurons - 1); i++){ target[i] = beVector[i]; } // i } else { for(int i = 0; i <= (inputNeurons - 1); i++){ target[i] = sampleInput[sample][i]; } // i } feedForward(); err = 0.0; for(int i = 0; i <= (outputNeurons - 1); i++){ err += sqrt(target[i] - actual[i]); } // i err = 0.5 * err; if(iterations > trainingReps){ stopLoop = true; } iterations += 1; backPropagate(); sample += 1; if(sample == maxSamples){ sample = 0; } } while(stopLoop == false); cout << "Iterations = " << iterations << endl; } void testNetwork(){ int index; int randomNumber, predicted; bool stopTest, stopSample, successful; //Test the network with random input patterns. stopTest = false; for(int test = 0; test <= maxTests; test++){ //Enter Beginning string. inputs[0] = 1.0; inputs[1] = 0.0; inputs[2] = 0.0; inputs[3] = 0.0; inputs[4] = 0.0; inputs[5] = 0.0; cout << "(0) "; feedForward(); stopSample = false; successful = false; index = 0; //note:If failed then index start from 0 again
/*However, the nature of this kind of recurrent network is easier to understand (at least to me),
imply by referring to the unit‘s position in serial order (i.e.; Y0, Y1, Y2, Y3, ...).
So for the purpose of this illustration, I‘ll just use strings of numbers like: 0, 3, 5, 2, 0,
where 0 refers to Y0, 3 refers to Y3, 5 refers to Y5, etc. Each string begins and ends with a terminal symbol; I‘ll use 0 for this example.*/
randomNumber = 0; predicted = 0; do { for(int i = 0; i <= 5; i++){ cout << actual[i] << " "; if(actual[i] >= 0.3){ //The output unit with the highest value (usually over 3.0) //is the network‘s predicted unit that it expects to appear //in the next input vector. //For example, if the 3rd output unit has the highest value, //the network expects the 3rd unit in the next input to //be 1.0 //If the actual value isn‘t what it expected, the random //sequence has failed, and a new test sequence begins. predicted = i; } } // i cout << "\n"; randomNumber = getRandomNumber(); //Enter a random letter. index += 1; //Increment to the next position. if(index == 5){ stopSample = true; } else { cout << "(" << randomNumber << ") "; } for( i = 0; i <= 5; i++){ if(i == randomNumber){//note:i==randomNumber&&i == predicted then succeed inputs[i] = 1.0; if(i == predicted){ successful = true; //for(int k=0;k<5;k++)//have a look; // cout<<"\nTang :the sequence is:"<<inputs[k]<<‘\t‘; //cout<<endl; } else { //Failure. Stop this sample and try a new sample. stopSample = true; } } else { inputs[i] = 0.0; } } // i feedForward(); } while(stopSample == false); //Enter another letter into this sample sequence. if((index > 4) && (successful == true)){ //note: stop the iteration until success a sequence matching success at least 5 times. //If the random sequence happens to be in the correct order, //the network reports success. cout << "Success." << endl; cout << "Completed " << test << " tests." << endl; stopTest = true; break; } else { cout << "Failed." << endl; if(test > maxTests){ stopTest = true; cout << "Completed " << test << " tests with no success." << endl; break; } } } // Test } void feedForward(){ double sum; //Calculate input and context connections to hidden layer. for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ sum = 0.0; //from input to hidden... for(int inp = 0; inp <= (inputNeurons - 1); inp++){ sum += inputs[inp] * wih[inp][hid]; } // inp //from context to hidden... for(int con = 0; con <= (contextNeurons - 1); con++){ sum += context[con] * wch[con][hid]; } // con //Add in bias. sum += wih[inputNeurons][hid]; sum += wch[contextNeurons][hid]; hidden[hid] = sigmoid(sum); } // hid //Calculate the hidden to output layer. for(int out = 0; out <= (outputNeurons - 1); out++){ sum = 0.0; for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ sum += hidden[hid] * who[hid][out]; } // hid //Add in bias. sum += who[hiddenNeurons][out]; actual[out] = sigmoid(sum); } // out //Copy outputs of the hidden to context layer. for(int con = 0; con <= (contextNeurons - 1); con++){ context[con] = hidden[con]; } // con } void backPropagate(){ //Calculate the output layer error (step 3 for output cell). for(int out = 0; out <= (outputNeurons - 1); out++){ erro[out] = (target[out] - actual[out]) * sigmoidDerivative(actual[out]); } // out //Calculate the hidden layer error (step 3 for hidden cell). for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ errh[hid] = 0.0; for(int out = 0; out <= (outputNeurons - 1); out++){ errh[hid] += erro[out] * who[hid][out]; } // out errh[hid] *= sigmoidDerivative(hidden[hid]); } // hid //Update the weights for the output layer (step 4). for( out = 0; out <= (outputNeurons - 1); out++){ for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ who[hid][out] += (learnRate * erro[out] * hidden[hid]); } // hid //Update the bias. who[hiddenNeurons][out] += (learnRate * erro[out]); } // out //Update the weights for the hidden layer (step 4). for( hid = 0; hid <= (hiddenNeurons - 1); hid++){ for(int inp = 0; inp <= (inputNeurons - 1); inp++){ wih[inp][hid] += (learnRate * errh[hid] * inputs[inp]); } // inp //Update the bias. wih[inputNeurons][hid] += (learnRate * errh[hid]); } // hid } void assignRandomWeights(){ for(int inp = 0; inp <= inputNeurons; inp++){ for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ //Assign a random weight value between -0.5 and 0.5 wih[inp][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0)); } // hid } // inp for(int con = 0; con <= contextNeurons; con++){ for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ //Assign a random weight value between -0.5 and 0.5 wch[con][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0)); } // hid } // con for(int hid = 0; hid <= hiddenNeurons; hid++){ for(int out = 0; out <= (outputNeurons - 1); out++){ //Assign a random weight value between -0.5 and 0.5 who[hid][out] = -0.5 + double(rand()/(RAND_MAX + 1.0)); } // out } // hid for(int out = 0; out <= outputNeurons; out++){ for(int con = 0; con <= (contextNeurons - 1); con++){ //These are all fixed weights set to 0.5 whc[out][con] = 0.5; } // con } // out } int getRandomNumber(){ //Generate random value between 0 and 6. return int(6*rand()/(RAND_MAX + 1.0)); } double sigmoid(double val){ return (1.0 / (1.0 + exp(-val))); } double sigmoidDerivative(double val){ return (val * (1.0 - val)); }
Elman network with additional notes
标签:col repo ports ini iostream stop iso mes nta
原文地址:http://www.cnblogs.com/ewitt/p/7639553.html