码迷,mamicode.com
首页 > Web开发 > 详细

【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

时间:2017-10-10 10:09:19      阅读:451      评论:0      收藏:0      [点我收藏+]

标签:sam   cto   clear   魔法   std   序列   问题   inpu   ase   

【BZOJ4709】[Jsoi2011]柠檬

Description

Flute 很喜欢柠檬。它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬。贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上。为了方便,我们从左到右给贝壳编号 1..N。每只贝壳的大小不一定相同,贝壳 i 的大小为 si(1 ≤ si ≤10,000)。变柠檬的魔法要求,Flute 每次从树枝一端取下一小段连续的贝壳,并选择一种贝壳的大小 s0。如果 这一小段贝壳中 大小为 s0 的贝壳有 t 只,那么魔法可以把这一小段贝壳变成 s0t^2 只柠檬。Flute 可以取任意多次贝壳,直到树枝上的贝壳被全部取完。各个小段中,Flute 选择的贝壳大小 s0 可以不同。而最终 Flute 得到的柠檬数,就是所有小段柠檬数的总和。Flute 想知道,它最多能用这一串贝壳变出多少柠檬。请你帮忙解决这个问题。

Input

第 1 行:一个整数,表示 N。
第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si。

Output

仅一个整数,表示 Flute 最多能得到的柠檬数。

Sample Input

5
2
2
5
2
3

Sample Output

21
//Flute 先从左端取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有比这更优的方案了。

题解:大爷说他从来没做过用单调栈优化的斜率优化,唯一的一道还是他自己出的,不过今天我也算是见过第一道这样的题了。

首先,从两边进行操作可以看成只从一边进行操作,然后我们将原序列反过来再做一遍就行了。

其次,每次施魔法时,区间的左端点和右端点一定都是相同种类的贝壳,这告诉我们应该将每种颜色放到一起处理。然后可以列出DP方程:

$f[i]=max{f[j-1]+(s[i]-s[j]+1)^2*color}$。

其中s[i]表示i这个颜色的前缀和,然后移项

$f[j-1]+(s[j]-1)^2*color=2*s[i]*color*(s[j]-1)+f[i]-s[i]*v[i]$

发现x单调递增,y单调递增,k也单调递增,求的还是上凸包!所以用对于每个颜色都用一个单调栈维护即可。

 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#define y(_) (f[(_)-1]+(s[_]-1)*(s[_]-1)*j)
#define x(_) (s[_]-1)
#define k (2*s[i]*j)
using namespace std;
const int maxn=100010;
typedef long long ll;
int n,m;
ll ans;
int t[maxn],last[maxn],pre[maxn];
ll v[maxn],s[maxn],f[maxn],g[maxn];
vector<int> st[maxn];
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)	f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
int main()
{
	n=rd();
	int i,j;
	for(i=1;i<=n;i++)	v[i]=rd(),pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1,m=max(m,(int)v[i]);
	for(i=1;i<=m;i++)	t[i]=-1;
	for(i=1;i<=n;i++)
	{
		j=v[i];
		while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]])))	t[j]--,st[j].erase(st[j].end()-1);
		t[j]++,st[j].push_back(i);
		while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1])))	t[j]--,st[j].erase(st[j].end()-1);
		g[i]=f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
	}
	for(i=1;(i<<1)<=n;i++)	swap(v[i],v[n-i+1]);
	memset(last,0,sizeof(last));
	for(i=1;i<=n;i++)	pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1;
	for(i=1;i<=m;i++)	st[i].clear(),t[i]=-1;
	for(i=1;i<=n;i++)
	{
		j=v[i];
		while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]])))	t[j]--,st[j].erase(st[j].end()-1);
		t[j]++,st[j].push_back(i);
		while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1])))	t[j]--,st[j].erase(st[j].end()-1);
		f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
	}
	ans=0;
	for(i=0;i<=n;i++)	ans=max(ans,g[i]+f[n-i]);
	printf("%lld",ans);
	return 0;
}

 

【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

标签:sam   cto   clear   魔法   std   序列   问题   inpu   ase   

原文地址:http://www.cnblogs.com/CQzhangyu/p/7643848.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!