标签:let ram tor att break user ogre 使用 部分
本来周末是最好的学习时间,不过这周末收房子,可想而知事情自然也不会少。这段时间的周末,可能很少有时间学习了。见缝插针吧。
不说废话了,好好学习。上回通过代码理解了Netty底层信息的流的传递机制,不过只是一个感性上的认识。教会你应该如何使用和使用的时候应该注意的方面。但是有一些细节的问题,并没有提及。比如在上回(《Java NIO框架Netty教程(四)- ChannelBuffer》http://www.it165.net/pro/html/201207/3198.html)的代码里,我们通过:
1.private void sendMessageByFrame(ChannelStateEvent e) {2.String msgOne = "Hello, ";3.String msgTwo = "I‘m ";4.String msgThree = "client.";5.e.getChannel().write(tranStr2Buffer(msgOne));6.e.getChannel().write(tranStr2Buffer(msgTwo));7.e.getChannel().write(tranStr2Buffer(msgThree));8.}
这样的方式,连续返送三次消息。但是如果你在服务端进行接收计数的话,你会发现,大部分时候都是接收到两次的事件请求。不过消息都是完整的。网上也有人提到过,进行10000次的连续放松,往往接受到的消息个数是999X的,总是就是消息数目上不匹配,这又是为何呢?笔者也只能通过阅读Netty的源码来找原因,我们一起来慢慢分析吧www.it165.net。
起点自然是选择在e.getChannel().writer()方法上。一路跟踪首先来到了:AbstractNioWorker.java类
001.protected void write0(AbstractNioChannel<?> channel) {002.boolean open = true;003.boolean addOpWrite = false;004.boolean removeOpWrite = false;005.boolean iothread = isIoThread(channel);006. 007.long writtenBytes = 0;008. 009.final SocketSendBufferPool sendBufferPool = this.sendBufferPool;010.final WritableByteChannel ch = channel.channel;011.final Queue<MessageEvent> writeBuffer = channel.writeBufferQueue;012.final int writeSpinCount = channel.getConfig().getWriteSpinCount();013.synchronized (channel.writeLock) {014.channel.inWriteNowLoop = true;015.for (;;) {016.MessageEvent evt = channel.currentWriteEvent;017.SendBuffer buf;018.if (evt == null) {019.if ((channel.currentWriteEvent = evt = writeBuffer.poll()) == null) {020.removeOpWrite = true;021.channel.writeSuspended = false;022.break;023.}024. 025.channel.currentWriteBuffer = buf = sendBufferPool.acquire(evt.getMessage());026.} else {027.buf = channel.currentWriteBuffer;028.}029. 030.ChannelFuture future = evt.getFuture();031.try {032.long localWrittenBytes = 0;033.for (int i = writeSpinCount; i > 0; i --) {034.localWrittenBytes = buf.transferTo(ch);035.if (localWrittenBytes != 0) {036.writtenBytes += localWrittenBytes;037.break;038.}039.if (buf.finished()) {040.break;041.}042.}043. 044.if (buf.finished()) {045.// Successful write - proceed to the next message.046.buf.release();047.channel.currentWriteEvent = null;048.channel.currentWriteBuffer = null;049.evt = null;050.buf = null;051.future.setSuccess();052.} else {053.// Not written fully - perhaps the kernel buffer is full.054.addOpWrite = true;055.channel.writeSuspended = true;056. 057.if (localWrittenBytes > 0) {058.// Notify progress listeners if necessary.059.future.setProgress(060.localWrittenBytes,061.buf.writtenBytes(), buf.totalBytes());062.}063.break;064.}065.} catch (AsynchronousCloseException e) {066.// Doesn‘t need a user attention - ignore.067.} catch (Throwable t) {068.if (buf != null) {069.buf.release();070.}071.channel.currentWriteEvent = null;072.channel.currentWriteBuffer = null;073.buf = null;074.evt = null;075.future.setFailure(t);076.if (iothread) {077.fireExceptionCaught(channel, t);078.} else {079.fireExceptionCaughtLater(channel, t);080.}081.if (t instanceof IOException) {082.open = false;083.close(channel, succeededFuture(channel));084.}085.}086.}087.channel.inWriteNowLoop = false;088. 089.// Initially, the following block was executed after releasing090.// the writeLock, but there was a race condition, and it has to be091.// executed before releasing the writeLock:092.//094.//095.if (open) {096.if (addOpWrite) {097.setOpWrite(channel);098.} else if (removeOpWrite) {099.clearOpWrite(channel);100.}101.}102.}103.if (iothread) {104.fireWriteComplete(channel, writtenBytes);105.} else {106.fireWriteCompleteLater(channel, writtenBytes);107.}108.}
这里, buf.transferTo(ch);的就是调用底层WritableByteChannel的write方法,把buffer写到管道里,传递过去。通过Debug可以看到,没调用一次这个方法,服务端的messageReceived方法就会进入断点一次。当然这个也只是表相,或者说也是在预料之内的。因为笔者从开始就怀疑是连续写入过快导致的问题,所以测试过每次write后停顿1秒。再write下一次。结果一切正常。
那么我们跟到这里的意义何在呢?笔者的思路是先证明不是在write端出现的写覆盖的问题,这样就可以从read端寻找问题。这里笔者也在这里加入了一个计数,测试究竟transferTo了几次。结果确实是3次。
1.for (int i = writeSpinCount; i > 0; i --) {2.localWrittenBytes = buf.transferTo(ch);3.System.out.println(++count);
接下来就从接收端找找原因,在NioWorker的read方法,实现如下:
01.@Override02.protected boolean read(SelectionKey k) {03.final SocketChannel ch = (SocketChannel) k.channel();04.final NioSocketChannel channel = (NioSocketChannel) k.attachment();05. 06.final ReceiveBufferSizePredictor predictor =07.channel.getConfig().getReceiveBufferSizePredictor();08.final int predictedRecvBufSize = predictor.nextReceiveBufferSize();09. 10.int ret = 0;11.int readBytes = 0;12.boolean failure = true;13. 14.ByteBuffer bb = recvBufferPool.acquire(predictedRecvBufSize);15.try {16.while ((ret = ch.read(bb)) > 0) {17.readBytes += ret;18.if (!bb.hasRemaining()) {19.break;20.}21.}22.failure = false;23.} catch (ClosedChannelException e) {24.// Can happen, and does not need a user attention.25.} catch (Throwable t) {26.fireExceptionCaught(channel, t);27.}28. 29.if (readBytes > 0) {30.bb.flip();31. 32.final ChannelBufferFactory bufferFactory =33.channel.getConfig().getBufferFactory();34.final ChannelBuffer buffer = bufferFactory.getBuffer(readBytes);35.buffer.setBytes(0, bb);36.buffer.writerIndex(readBytes);37. 38.recvBufferPool.release(bb);39. 40.// Update the predictor.41.predictor.previousReceiveBufferSize(readBytes);42. 43.// Fire the event.44.fireMessageReceived(channel, buffer);45.} else {46.recvBufferPool.release(bb);47.}48. 49.if (ret < 0 || failure) {50.k.cancel(); // Some JDK implementations run into an infinite loop without this.51.close(channel, succeededFuture(channel));52.return false;53.}54. 55.return true;56.}
在这个方法的外层是一个循环,不停的遍历,如果有SelectionKey k存在,则进入此方法读取buffer中的数据。这个SelectionKey 区分只是一种类型,这个设计到Java NIO中的Seletor机制,这个笔者准备下讲穿插一下。属于Netty底层的一个重要的机制。
messageReceived事件的触发,是在读取完当前缓冲池中所有的信息之后在触发的。这倒是可以解释,为什么即使我们收到事件的次数少,但是消息是完整的。
从目前来看,Netty通过Java 的NIO机制传递数据,数据读写跟事件没有严格的绑定机制。数据是以流的形式独立存在,读写都有一个缓冲池。
不过,这些还远未解决笔者的疑惑。笔者决定先了解一下Seletor机制,再回头来探索这个问题。
待解决……
Java NIO框架Netty教程(五) 消息收发次数不匹配的问题
标签:let ram tor att break user ogre 使用 部分
原文地址:http://www.cnblogs.com/hashcoder/p/7648407.html