标签:pass 数据库 处理 nic error: timeout 模型 避免 img
主进程创建守护进程
守护进程(太监)会在主进程(皇帝)代码执行结束后就终止(不管守护进程运行到哪都直接结束)
守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): self.name=name super().__init__() def run(self): print(‘%s is piaoing‘ %self.name) time.sleep(random.randrange(1,3)) print(‘%s is piao end‘ %self.name) p=Piao(‘egon‘) p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() print(‘主‘)
#主进程代码运行完毕,守护进程就会结束 from multiprocessing import Process from threading import Thread import time def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止
进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,
竞争带来的结果就是错乱,如何控制,就是加锁处理
ps:加锁相当于上厕所,大家都能看到那个厕所,但是里面的人上锁不出来后面的就无法运行,必须等他运行结束才可以,这就保证了有序化,但是效率慢
part1:多个进程共享同一打印终端
#并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import os,time def work(): print(‘%s is running‘ %os.getpid()) time.sleep(2) print(‘%s is done‘ %os.getpid()) if __name__ == ‘__main__‘: for i in range(3): p=Process(target=work) p.start()
#由并发变成了串行,牺牲了运行效率,但避免了竞争 from multiprocessing import Process,Lock import os,time def work(lock): lock.acquire() print(‘%s is running‘ %os.getpid()) time.sleep(2) print(‘%s is done‘ %os.getpid()) lock.release() if __name__ == ‘__main__‘: lock=Lock() for i in range(3): p=Process(target=work,args=(lock,)) p.start()
part2:多个进程共享同一文件
文件当数据库,模拟抢票
#文件db的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 def search(): dic=json.load(open(‘db.txt‘)) print(‘\033[1;31;40m剩余票数%s\033[0m‘%dic[‘count‘]) def get(): dic=json.load(open(‘db.txt‘)) time.sleep(0.1)#模拟读数据的网络延迟 if dic[‘count‘]>0: dic[‘count‘]-=1 time.sleep(0.2)#模拟写数据的网络延迟 json.dump(dic,open(‘db.txt‘,‘w‘)) print(‘\033[1;31;40m购票成功\033[0m‘) def task(lock): search() get() if __name__==‘__main__‘: lock=Lock() for i in range(5):#模拟并发5个客户端抢票 p=Process(target=task,args=(lock,)) p.start() 剩余票数1 剩余票数1 剩余票数1 剩余票数1 剩余票数1 购票成功 购票成功 购票成功 购票成功 购票成功
def search(): dic=json.load(open(‘db.txt‘)) print(‘\033[1;31;40m剩余票数%s\033[0m‘%dic[‘count‘]) def get(): dic=json.load(open(‘db.txt‘)) time.sleep(0.1) if dic[‘count‘]>0: dic[‘count‘]-=1 time.sleep(0.2) json.dump(dic,open(‘db.txt‘,‘w‘)) print(‘\033[1;31;40m购票成功\033[0m‘) def task(lock): search() lock.acquire()#上锁 get()#买票 lock.release()#解锁 if __name__==‘__main__‘: lock=Lock() for i in range(5): p=Process(target=task,args=(lock,)) p.start()
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。 虽然可以用文件共享数据实现进程间通信,但问题是: 1.效率低(共享数据基于文件,而文件是硬盘上的数据) 2.需要自己加锁处理 #因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。 队列和管道都是将数据存放于内存中 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的
创建队列的类(底层就是以管道和锁定的方式实现):
Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 参数介绍: maxsize是队列中允许最大项数,省略则无大小限制。 主要介绍: q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。 2 q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常. 4 q.get_nowait():同q.get(False) 5 q.put_nowait():同q.put(False) 7 q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。 8 q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。 9 q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样 其他方法(了解): 1 q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞 2 q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。 3 q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为
应用:
‘‘‘
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
‘‘‘
from multiprocessing import Process,Queue
import time
q=Queue(3)
#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
print(q.full()) #满了
print(q.get())
print(q.get())
print(q.get())
print(q.empty()) #空了
pass
Python全栈之路模块----之-----守护进程\进程锁\队列\生产者消费者模式
标签:pass 数据库 处理 nic error: timeout 模型 避免 img
原文地址:http://www.cnblogs.com/zgd1234/p/7652458.html