码迷,mamicode.com
首页 > Web开发 > 详细

DSD:Dense-Sparse-Dense training for deep neural networks

时间:2017-10-11 21:04:56      阅读:259      评论:0      收藏:0      [点我收藏+]

标签:image   int   imp   from   ssi   ram   regular   dsd   show   

ICLR 2017会议论文。

摘要:

神经网络因为参数很多,所以很难训练。

Modern deep neural networks have a large number of parameters, making them very hard to train.

所以,分步骤训练参数。

We propose DSD, a dense-sparse-dense training ?ow, for regularizing deep neural networks and achieving better optimization performance. In the ?rst D (Dense) step, we train a dense network to learn connection weights and importance. In the S (Sparse) step, we regularize the network by pruning the unimportant connections with small weights and retraining the network given the sparsity constraint. In the ?nal D (re-Dense) step, we increase the model capacity by removing the sparsity constraint, re-initialize the pruned parameters from zero and retrain the whole dense network.

实验结果好。

Experiments show that DSD training can improve the performance for a wide range of CNNs, RNNs and LSTMs on the tasks of image classi?cation, caption generation and speech recognition

 

DSD:Dense-Sparse-Dense training for deep neural networks

标签:image   int   imp   from   ssi   ram   regular   dsd   show   

原文地址:http://www.cnblogs.com/mengmengmiaomiao/p/7652779.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!