标签:logs array sum nbsp timeit imp data div 性能
import timeit sum_by_for = """ for d in data: s += d """ sum_by_sum = """ sum(data) """ sum_by_numpy_sum = """ import numpy numpy.sum(data) """ def timeit_using_list(n, loops): list_setup = """ data =[1] * {} s = 0 """.format(n) print(‘list result:‘) print(timeit.timeit(sum_by_for, list_setup, number = loops)) print(timeit.timeit(sum_by_sum, list_setup, number = loops)) print(timeit.timeit(sum_by_numpy_sum, list_setup, number = loops)) def timeit_using_array(n, loops): array_setup = """ import array data = array.array(‘L‘, [1] * {}) s = 0 """.format(n) print(‘array result:‘) print(timeit.timeit(sum_by_for, array_setup, number = loops)) print(timeit.timeit(sum_by_sum, array_setup, number = loops)) print(timeit.timeit(sum_by_numpy_sum, array_setup, number = loops)) def timeit_using_numpy(n, loops): numpy_setup = """ import numpy data = numpy.array([1] * {}) s = 0 """.format(n) print(‘numpy result:‘) print(timeit.timeit(sum_by_for, numpy_setup, number = loops)) print(timeit.timeit(sum_by_sum, numpy_setup, number = loops)) print(timeit.timeit(sum_by_numpy_sum, numpy_setup, number = loops)) if __name__ == ‘__main__‘: timeit_using_list(30000, 500) timeit_using_array(30000, 500) timeit_using_numpy(30000, 500)
标签:logs array sum nbsp timeit imp data div 性能
原文地址:http://www.cnblogs.com/xiaoyingying/p/7689848.html