标签:epo cti -o 中文 weixin tags person attr element
该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse‘s story</title></head> <body> asdf <div class="title"> <b>The Dormouse‘s story总共</b> <h1>f</h1> </div> <div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</div> ad<br/>sf <p class="story">...</p> </body> </html> """ soup = BeautifulSoup(html_doc, features = "lxml" ) # 找到第一个a标签 tag1 = soup.find(name = ‘a‘ ) # 找到所有的a标签 tag2 = soup.find_all(name = ‘a‘ ) # 找到id=link2的标签 tag3 = soup.select( ‘#link2‘ ) |
使用示例:
1
2
3
4
5
6
7
8
9
10
11
|
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse‘s story</title></head> <body> ... </body> </html> """ soup = BeautifulSoup(html_doc, features = "lxml" ) |
1. name,标签名称
1
2
3
4
5
|
# tag = soup.find(‘a‘) # name = tag.name # 获取 # print(name) # tag.name = ‘span‘ # 设置 # print(soup) |
2. attr,标签属性
1
2
3
4
5
6
|
# tag = soup.find(‘a‘) # attrs = tag.attrs # 获取 # print(attrs) # tag.attrs = {‘ik‘:123} # 设置 # tag.attrs[‘id‘] = ‘iiiii‘ # 设置 # print(soup) |
3. children,所有子标签
1
2
|
# body = soup.find(‘body‘) # v = body.children |
4. children,所有子子孙孙标签
1
2
|
# body = soup.find(‘body‘) # v = body.descendants |
5. clear,将标签的所有子标签全部清空(保留标签名)
1
2
3
|
# tag = soup.find(‘body‘) # tag.clear() # print(soup) |
6. decompose,递归的删除所有的标签
1
2
3
|
# body = soup.find(‘body‘) # body.decompose() # print(soup) |
7. extract,递归的删除所有的标签,并获取删除的标签
1
2
3
|
# body = soup.find(‘body‘) # v = body.extract() # print(soup) |
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
1
2
3
4
|
# body = soup.find(‘body‘) # v = body.decode() # v = body.decode_contents() # print(v) |
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
1
2
3
4
|
# body = soup.find(‘body‘) # v = body.encode() # v = body.encode_contents() # print(v) |
10. find,获取匹配的第一个标签
1
2
3
4
5
|
# tag = soup.find(‘a‘) # print(tag) # tag = soup.find(name=‘a‘, attrs={‘class‘: ‘sister‘}, recursive=True, text=‘Lacie‘) # tag = soup.find(name=‘a‘, class_=‘sister‘, recursive=True, text=‘Lacie‘) # print(tag) |
11. find_all,获取匹配的所有标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# tags = soup.find_all(‘a‘) # print(tags) # tags = soup.find_all(‘a‘,limit=1) # print(tags) # tags = soup.find_all(name=‘a‘, attrs={‘class‘: ‘sister‘}, recursive=True, text=‘Lacie‘) # # tags = soup.find(name=‘a‘, class_=‘sister‘, recursive=True, text=‘Lacie‘) # print(tags) # ####### 列表 ####### # v = soup.find_all(name=[‘a‘,‘div‘]) # print(v) # v = soup.find_all(class_=[‘sister0‘, ‘sister‘]) # print(v) # v = soup.find_all(text=[‘Tillie‘]) # print(v, type(v[0])) # v = soup.find_all(id=[‘link1‘,‘link2‘]) # print(v) # v = soup.find_all(href=[‘link1‘,‘link2‘]) # print(v) # ####### 正则 ####### import re # rep = re.compile(‘p‘) # rep = re.compile(‘^p‘) # v = soup.find_all(name=rep) # print(v) # rep = re.compile(‘sister.*‘) # v = soup.find_all(class_=rep) # print(v) # rep = re.compile(‘http://www.oldboy.com/static/.*‘) # v = soup.find_all(href=rep) # print(v) # ####### 方法筛选 ####### # def func(tag): # return tag.has_attr(‘class‘) and tag.has_attr(‘id‘) # v = soup.find_all(name=func) # print(v) # ## get,获取标签属性 # tag = soup.find(‘a‘) # v = tag.get(‘id‘) # print(v) |
12. has_attr,检查标签是否具有该属性
1
2
3
|
# tag = soup.find(‘a‘) # v = tag.has_attr(‘id‘) # print(v) |
13. get_text,获取标签内部文本内容
1
2
3
|
# tag = soup.find(‘a‘) # v = tag.get_text # print(v) |
14. index,检查标签在某标签中的索引位置
1
2
3
4
5
6
7
|
# tag = soup.find(‘body‘) # v = tag.index(tag.find(‘div‘)) # print(v) # tag = soup.find(‘body‘) # for i,v in enumerate(tag): # print(i,v) |
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:‘br‘ , ‘hr‘, ‘input‘, ‘img‘, ‘meta‘,‘spacer‘, ‘link‘, ‘frame‘, ‘base‘
1
2
3
|
# tag = soup.find(‘br‘) # v = tag.is_empty_element # print(v) |
16. 当前的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# soup.next # soup.next_element # soup.next_elements # soup.next_sibling # soup.next_siblings # # tag.previous # tag.previous_element # tag.previous_elements # tag.previous_sibling # tag.previous_siblings # # tag.parent # tag.parents |
17. 查找某标签的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# tag.find_next(...) # tag.find_all_next(...) # tag.find_next_sibling(...) # tag.find_next_siblings(...) # tag.find_previous(...) # tag.find_all_previous(...) # tag.find_previous_sibling(...) # tag.find_previous_siblings(...) # tag.find_parent(...) # tag.find_parents(...) # 参数同find_all |
18. select,select_one, CSS选择器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
soup.select( "title" ) soup.select( "p nth-of-type(3)" ) soup.select( "body a" ) soup.select( "html head title" ) tag = soup.select( "span,a" ) soup.select( "head > title" ) soup.select( "p > a" ) soup.select( "p > a:nth-of-type(2)" ) soup.select( "p > #link1" ) soup.select( "body > a" ) soup.select( "#link1 ~ .sister" ) soup.select( "#link1 + .sister" ) soup.select( ".sister" ) soup.select( "[class~=sister]" ) soup.select( "#link1" ) soup.select( "a#link2" ) soup.select( ‘a[href]‘ ) soup.select( ‘a[href="http://example.com/elsie"]‘ ) soup.select( ‘a[href^="http://example.com/"]‘ ) soup.select( ‘a[href$="tillie"]‘ ) soup.select( ‘a[href*=".com/el"]‘ ) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance (child, Tag): continue if not child.has_attr( ‘href‘ ): continue yield child tags = soup.find( ‘body‘ ).select( "a" , _candidate_generator = default_candidate_generator) print ( type (tags), tags) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance (child, Tag): continue if not child.has_attr( ‘href‘ ): continue yield child tags = soup.find( ‘body‘ ).select( "a" , _candidate_generator = default_candidate_generator, limit = 1 ) print ( type (tags), tags) |
19. 标签的内容
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# tag = soup.find(‘span‘) # print(tag.string) # 获取 # tag.string = ‘new content‘ # 设置 # print(soup) # tag = soup.find(‘body‘) # print(tag.string) # tag.string = ‘xxx‘ # print(soup) # tag = soup.find(‘body‘) # v = tag.stripped_strings # 递归内部获取所有标签的文本 # print(v) |
20.append在当前标签内部追加一个标签
1
2
3
4
5
6
7
8
9
10
|
# tag = soup.find(‘body‘) # tag.append(soup.find(‘a‘)) # print(soup) # # from bs4.element import Tag # obj = Tag(name=‘i‘,attrs={‘id‘: ‘it‘}) # obj.string = ‘我是一个新来的‘ # tag = soup.find(‘body‘) # tag.append(obj) # print(soup) |
21.insert在当前标签内部指定位置插入一个标签
1
2
3
4
5
6
|
# from bs4.element import Tag # obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘}) # obj.string = ‘我是一个新来的‘ # tag = soup.find(‘body‘) # tag.insert(2, obj) # print(soup) |
22. insert_after,insert_before 在当前标签后面或前面插入
1
2
3
4
5
6
7
|
# from bs4.element import Tag # obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘}) # obj.string = ‘我是一个新来的‘ # tag = soup.find(‘body‘) # # tag.insert_before(obj) # tag.insert_after(obj) # print(soup) |
23. replace_with 在当前标签替换为指定标签
1
2
3
4
5
6
|
# from bs4.element import Tag # obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘}) # obj.string = ‘我是一个新来的‘ # tag = soup.find(‘div‘) # tag.replace_with(obj) # print(soup) |
24. 创建标签之间的关系
1
2
3
4
|
# tag = soup.find(‘div‘) # a = soup.find(‘a‘) # tag.setup(previous_sibling=a) # print(tag.previous_sibling) |
25. wrap,将指定标签把当前标签包裹起来
1
2
3
4
5
6
7
8
9
10
11
|
# from bs4.element import Tag # obj1 = Tag(name=‘div‘, attrs={‘id‘: ‘it‘}) # obj1.string = ‘我是一个新来的‘ # # tag = soup.find(‘a‘) # v = tag.wrap(obj1) # print(soup) # tag = soup.find(‘a‘) # v = tag.wrap(soup.find(‘p‘)) # print(soup) |
26. unwrap,去掉当前标签,将保留其包裹的标签
1
2
3
|
# tag = soup.find(‘a‘) # v = tag.unwrap() # print(soup) |
更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
把下面代码,加入到代码中,可以下载网站源码到本地分析
with open(‘weixin.html‘,‘wb‘) as f: f.write(wx_login_page.content)
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: nulige import requests from bs4 import BeautifulSoup response = requests.get( url=‘http://www.autohome.com.cn/news/‘ ) #解决爬虫乱码问题 response.encoding = response.apparent_encoding # 生成Soup对象, soup = BeautifulSoup(response.text, features=‘html.parser‘) # find查找第一个符合条件的对象 target = soup.find(id=‘auto-channel-lazyload-article‘) #find_all查找所有符合的对象,查找出来的值在列表中 li_list = target.find_all(‘li‘) #循环拿到具体每个对象 for i in li_list: a = i.find(‘a‘) if a: print(a.attrs.get(‘href‘)) # # .attrs查找到属性 txt = a.find(‘h3‘).text # 是对象 img_url = a.find(‘img‘).attrs.get(‘src‘) print(img_url) # 再发一个请求 img_response = requests.get(url=img_url) import uuid file_name = str(uuid.uuid4()) + ‘.jpg‘ with open(file_name,‘wb‘) as f: f.write(img_response.content)
备注:# 找到第一个a标签
tag1
=
soup.find(name
=
‘a‘
)
# 找到所有的a标签
tag2
=
soup.find_all(name
=
‘a‘
)
# 找到id=link2的标签
tag3
=
soup.select(
‘#link2‘
)
#!/usr/bin/env python # -*- coding: utf8 -*- # __Author: "Skiler Hao" # date: 2017/5/10 11:06 import requests from bs4 import BeautifulSoup # 第一次请求 first_request_response = requests.get( url = ‘http://dig.chouti.com/‘, ) # 获取第一次登录获取的cookie内容 firstget_cookie_dict = first_request_response.cookies.get_dict() # 登录POST请求 post_dict = { ‘phone‘: ‘8618811*****‘, #86+手机号码 ‘password‘: ‘******‘, #密码 ‘oneMonth‘: 1 } # 发送请求,携带cookie和数据 login_response = requests.post( url = ‘http://dig.chouti.com/login‘, data = post_dict, cookies= firstget_cookie_dict ) # 点赞请求 dianzan_response = requests.post( url = ‘http://dig.chouti.com/link/vote?linksId=11832246‘, cookies= firstget_cookie_dict ) print(dianzan_response.text) # 取消点赞 cancel_dianzan_response = requests.post( url = ‘http://dig.chouti.com/vote/cancel/vote.do‘, cookies= firstget_cookie_dict, data={‘linksId‘:11832246} ) print(cancel_dianzan_response.text) # 获取个人信息 get_person_info_resonse = requests.get( url = ‘http://dig.chouti.com/profile‘, cookies= firstget_cookie_dict, ) # 按照某种encoding方式编码 get_person_info_resonse.encoding = get_person_info_resonse.apparent_encoding # 将其内容放入BS中进行解析 person_info_site = BeautifulSoup(get_person_info_resonse.text,features=‘html.parser‘) # 找到之后可以做任何处理,获取配置中的nickname nickname_tag = person_info_site.find(id=‘nick‘) nickname = person_info_site.find(id=‘nick‘).attrs.get(‘value‘) print(‘昵称:‘,nickname) # 更新自己在抽屉上的个人信息 personal_info = { ‘jid‘: ‘cdu_49017916793‘, ‘nick‘: ‘努力哥‘, ‘imgUrl‘: ‘http://img2.chouti.com/CHOUTI_90A38B32473A49B7B26A49F46B34268C_W585H359=C60x60.png‘, # http://img2.chouti.com/CHOUTI_BAE7F736FE7B48E49D1CEE459020F3B0_W390H390=48x48.jpg ‘sex‘: True, ‘proveName‘: ‘北京‘, ‘cityName‘: ‘澳门‘, ‘sign‘: ‘黑hi呃呃哈发到付‘ } update_person_info_resonse = requests.post( url = ‘http://dig.chouti.com/profile/update‘, cookies= firstget_cookie_dict, data=personal_info ) print(update_person_info_resonse.text) #########################Session方式登录抽屉######################### session = requests.Session() # 先登陆一下抽屉网 i1 = session.get( url=‘http://dig.chouti.com/‘ ) # 模拟抽屉登录 login_post_dict = { ‘phone‘: ‘86188116*****‘, #86+手机号码 ‘password‘: ‘******‘, #密码 ‘oneMonth‘: 1 } i2 = session.post( url=‘http://dig.chouti.com/login‘, data=login_post_dict, )
#!/usr/bin/env python # -*- coding: utf8 -*- # date: 2017/5/10 16:32 import requests from bs4 import BeautifulSoup # GitHub是基于authenticity_token,具有预防csrf_token的功能 # 首先访问页面,获取页面上的authenticity_token i1 = requests.get(‘https://github.com/login‘) # print(i1.content) login_page_res = BeautifulSoup(i1.content,features=‘lxml‘) authenticity_token = login_page_res.find(name=‘input‘,attrs={‘name‘:‘authenticity_token‘}).attrs.get(‘value‘) cookies1 = i1.cookies.get_dict() # print(authenticity_token) form_data = { ‘commit‘: ‘Sign in‘, ‘utf8‘: ‘?‘, ‘authenticity_token‘: authenticity_token, ‘login‘: ‘*****‘, ‘password‘: ‘******‘, } # 将数据封装在post请求中进行登录,而且要加上cookie login_res = requests.post( url=‘https://github.com/session‘, data=form_data, cookies=cookies1 ) # print(login_res.text) # 拿到页面中的自己的项目列表 login_page_res = BeautifulSoup(login_res.content,features=‘lxml‘) list_info = login_page_res.select("span .repo") for i in list_info: print(i.text) cookies1 = i1.cookies.get_dict()
4、自动登录cnblog
博客园站用了一个rsa算法的加密模块,所以安装加密模块。才能验证登录。
pip3 install rsa
代码:
#!/usr/bin/env python # -*- coding: utf8 -*- # date: 2017/5/11 10:51 import re import json import base64 import rsa import requests from bs4 import BeautifulSoup # 负责模仿前端js模块对账号和密码加密 def js_enrypt(text): # 先从博客园拿到public key public_key = ‘MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCp0wHYbg/NOPO3nzMD3dndwS0MccuMeXCHgVlGOoYyFwLdS24Im2e7YyhB0wrUsyYf0/nhzCzBK8ZC9eCWqd0aHbdgOQT6CuFQBMjbyGYvlVYU2ZP7kG9Ft6YV6oc9ambuO7nPZh+bvXH0zDKfi02prknrScAKC0XhadTHT3Al0QIDAQAB‘ # 将拿到的一串字符,转换成64进制 der = base64.standard_b64decode(public_key) # 再将其转换成数字,作为公钥加载 pk = rsa.PublicKey.load_pkcs1_openssl_der(der) # 运用公钥对传进来的文字进行加密 v1 = rsa.encrypt(bytes(text,‘utf8‘),pk) # 对加密后的内容进行解码 value = base64.encodebytes(v1).replace(b‘\n‘,b‘‘) value = value.decode(‘utf8‘) # 将其返回 return value session = requests.Session() # 写个错误的用户名和密码,提交一下。就找到提交数据 post_data = { ‘input1‘: js_enrypt(‘******‘), ‘input2‘: js_enrypt(‘******‘), ‘remember‘: True } # 发送一次请求,获取ajax发送post时要发送的VerificationToken,需要将其放在请求头部 login_page = session.get( url=‘https://passport.cnblogs.com/user/signin‘, ) VerificationToken = re.compile("‘VerificationToken‘: ‘(.*)‘") v = re.search(VerificationToken,login_page.text) VerificationToken = v.group(1) # 发送请求,注意将数据json序列化,因为Accept:application/json login_post_res = session.post( url=‘https://passport.cnblogs.com/user/signin‘, data=json.dumps(post_data), headers={ ‘VerificationToken‘: VerificationToken, ‘X-Requested-With‘: ‘XMLHttpRequest‘, ‘Content-Type‘: ‘application/json; charset=UTF-8‘ } ) # 登录账号设置页 setting_page = session.get( url=‘https://home.cnblogs.com/set/account/‘, ) soup = BeautifulSoup(setting_page.content,features=‘lxml‘) name = soup.select_one(‘#loginName_display_block div‘).get_text().strip() print(‘你的账号名为:‘,name)
5、自动登录知乎
#!/usr/bin/env python # -*- coding: utf8 -*- import requests from bs4 import BeautifulSoup session = requests.Session() # 知乎会查看你的是否有用户客户端信息,没有不会让爬的 signin_page = session.get( url=‘https://www.zhihu.com/#signin‘, headers={ ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘, } ) # 拿到页面的_xrf为了防止csrf攻击,post数据的时候需要提供 signin_page_tag = BeautifulSoup(signin_page.content,features=‘lxml‘) xsrf_code = signin_page_tag.find(‘input‘,attrs={‘name‘:‘_xsrf‘}).attrs.get(‘value‘) # 从知乎服务器获取验证码照片,发送请求POST,发现需要传入以下三个参数 # r:1494416**** # type:login # lang:cn import time current_time = time.time() yanzhengma = session.get( url=‘https://www.zhihu.com/captcha.gif‘, params={ ‘r‘: current_time, ‘type‘: ‘login‘, # ‘lang‘: ‘en‘ # 使用不同的语言,cn最为复杂,不加的话,最容易识别,en为立体的英文也不好识别 }, headers={ ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘, } ) # 将从服务器收到的验证码写入文件,可以查看啦 with open(‘zhihu.gif‘, ‘wb‘) as f: f.write(yanzhengma.content) captcha = input("请打开照片查看验证码:") form_data = { ‘_xsrf‘: xsrf_code, ‘password‘: ‘********‘, ‘captcha‘: captcha, # ‘captcha‘: ‘{"img_size": [200, 44], "input_points": [[40.2, 34.2], [156.2, 28.2], [138.2, 24.2]]}‘, # ‘captcha_type‘: ‘cn‘, # 如果为中文的验证码比较复杂 ‘phone_num‘: ‘***********‘, #填手机号码登录 # ‘email‘:"sddasd@123.com" # 邮箱登录的方式 } login_response = session.post( url=‘https://www.zhihu.com/login/phone_num‘, #前端会根据你的数据类型选择用邮箱或者手机号码登录 # url=‘https://www.zhihu.com/login/phone_num‘ data=form_data, headers = { ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘, } ) index_page = session.get( url=‘https://www.zhihu.com/‘, headers={ ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘, } ) index_page_tag = BeautifulSoup(index_page.content,features=‘lxml‘) print(index_page_tag)
运行程序后,输入验证码。登录成功后,搜索用户名称,能找到我多个相同的用户名称,就说明登录成功。
标签:epo cti -o 中文 weixin tags person attr element
原文地址:http://www.cnblogs.com/zjltt/p/7700155.html