码迷,mamicode.com
首页 > Web开发 > 详细

web爬虫,BeautifulSoup

时间:2017-10-20 18:41:28      阅读:187      评论:0      收藏:0      [点我收藏+]

标签:epo   cti   -o   中文   weixin   tags   person   attr   element   

BeautifulSoup

该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from bs4 import BeautifulSoup
 
html_doc = """
<html><head><title>The Dormouse‘s story</title></head>
<body>
asdf
    <div class="title">
        <b>The Dormouse‘s story总共</b>
        <h1>f</h1>
    </div>
<div class="story">Once upon a time there were three little sisters; and their names were
    <a  class="sister0" id="link1">Els<span>f</span>ie</a>,
    <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
    <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</div>
ad<br/>sf
<p class="story">...</p>
</body>
</html>
"""
 
soup = BeautifulSoup(html_doc, features="lxml")
# 找到第一个a标签
tag1 = soup.find(name=‘a‘)
# 找到所有的a标签
tag2 = soup.find_all(name=‘a‘)
# 找到id=link2的标签
tag3 = soup.select(‘#link2‘)

使用示例:

1
2
3
4
5
6
7
8
9
10
11
from bs4 import BeautifulSoup
 
html_doc = """
<html><head><title>The Dormouse‘s story</title></head>
<body>
    ...
</body>
</html>
"""
 
soup = BeautifulSoup(html_doc, features="lxml")

1. name,标签名称

1
2
3
4
5
# tag = soup.find(‘a‘)
# name = tag.name # 获取
# print(name)
# tag.name = ‘span‘ # 设置
# print(soup)

2. attr,标签属性

1
2
3
4
5
6
# tag = soup.find(‘a‘)
# attrs = tag.attrs    # 获取
# print(attrs)
# tag.attrs = {‘ik‘:123} # 设置
# tag.attrs[‘id‘] = ‘iiiii‘ # 设置
# print(soup)

3. children,所有子标签

1
2
# body = soup.find(‘body‘)
# v = body.children

4. children,所有子子孙孙标签

1
2
# body = soup.find(‘body‘)
# v = body.descendants

5. clear,将标签的所有子标签全部清空(保留标签名)

1
2
3
# tag = soup.find(‘body‘)
# tag.clear()
# print(soup)

6. decompose,递归的删除所有的标签

1
2
3
# body = soup.find(‘body‘)
# body.decompose()
# print(soup)

7. extract,递归的删除所有的标签,并获取删除的标签

1
2
3
# body = soup.find(‘body‘)
# v = body.extract()
# print(soup)

8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)

1
2
3
4
# body = soup.find(‘body‘)
# v = body.decode()
# v = body.decode_contents()
# print(v)

9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)

1
2
3
4
# body = soup.find(‘body‘)
# v = body.encode()
# v = body.encode_contents()
# print(v)

10. find,获取匹配的第一个标签

1
2
3
4
5
# tag = soup.find(‘a‘)
# print(tag)
# tag = soup.find(name=‘a‘, attrs={‘class‘: ‘sister‘}, recursive=True, text=‘Lacie‘)
# tag = soup.find(name=‘a‘, class_=‘sister‘, recursive=True, text=‘Lacie‘)
# print(tag)

11. find_all,获取匹配的所有标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# tags = soup.find_all(‘a‘)
# print(tags)
 
# tags = soup.find_all(‘a‘,limit=1)
# print(tags)
 
# tags = soup.find_all(name=‘a‘, attrs={‘class‘: ‘sister‘}, recursive=True, text=‘Lacie‘)
# # tags = soup.find(name=‘a‘, class_=‘sister‘, recursive=True, text=‘Lacie‘)
# print(tags)
 
 
# ####### 列表 #######
# v = soup.find_all(name=[‘a‘,‘div‘])
# print(v)
 
# v = soup.find_all(class_=[‘sister0‘, ‘sister‘])
# print(v)
 
# v = soup.find_all(text=[‘Tillie‘])
# print(v, type(v[0]))
 
 
# v = soup.find_all(id=[‘link1‘,‘link2‘])
# print(v)
 
# v = soup.find_all(href=[‘link1‘,‘link2‘])
# print(v)
 
# ####### 正则 #######
import re
# rep = re.compile(‘p‘)
# rep = re.compile(‘^p‘)
# v = soup.find_all(name=rep)
# print(v)
 
# rep = re.compile(‘sister.*‘)
# v = soup.find_all(class_=rep)
# print(v)
 
# rep = re.compile(‘http://www.oldboy.com/static/.*‘)
# v = soup.find_all(href=rep)
# print(v)
 
# ####### 方法筛选 #######
# def func(tag):
# return tag.has_attr(‘class‘) and tag.has_attr(‘id‘)
# v = soup.find_all(name=func)
# print(v)
 
 
# ## get,获取标签属性
# tag = soup.find(‘a‘)
# v = tag.get(‘id‘)
# print(v)

12. has_attr,检查标签是否具有该属性

1
2
3
# tag = soup.find(‘a‘)
# v = tag.has_attr(‘id‘)
# print(v)

13. get_text,获取标签内部文本内容

1
2
3
# tag = soup.find(‘a‘)
# v = tag.get_text
# print(v)

14. index,检查标签在某标签中的索引位置

1
2
3
4
5
6
7
# tag = soup.find(‘body‘)
# v = tag.index(tag.find(‘div‘))
# print(v)
 
# tag = soup.find(‘body‘)
# for i,v in enumerate(tag):
# print(i,v)

15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,

     判断是否是如下标签:‘br‘ , ‘hr‘, ‘input‘, ‘img‘, ‘meta‘,‘spacer‘, ‘link‘, ‘frame‘, ‘base‘

1
2
3
# tag = soup.find(‘br‘)
# v = tag.is_empty_element
# print(v)

16. 当前的关联标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# soup.next
# soup.next_element
# soup.next_elements
# soup.next_sibling
# soup.next_siblings
 
#
# tag.previous
# tag.previous_element
# tag.previous_elements
# tag.previous_sibling
# tag.previous_siblings
 
#
# tag.parent
# tag.parents

17. 查找某标签的关联标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# tag.find_next(...)
# tag.find_all_next(...)
# tag.find_next_sibling(...)
# tag.find_next_siblings(...)
 
# tag.find_previous(...)
# tag.find_all_previous(...)
# tag.find_previous_sibling(...)
# tag.find_previous_siblings(...)
 
# tag.find_parent(...)
# tag.find_parents(...)
 
# 参数同find_all

18. select,select_one, CSS选择器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
soup.select("title")
 
soup.select("p nth-of-type(3)")
 
soup.select("body a")
 
soup.select("html head title")
 
tag = soup.select("span,a")
 
soup.select("head > title")
 
soup.select("p > a")
 
soup.select("p > a:nth-of-type(2)")
 
soup.select("p > #link1")
 
soup.select("body > a")
 
soup.select("#link1 ~ .sister")
 
soup.select("#link1 + .sister")
 
soup.select(".sister")
 
soup.select("[class~=sister]")
 
soup.select("#link1")
 
soup.select("a#link2")
 
soup.select(‘a[href]‘)
 
soup.select(‘a[href="http://example.com/elsie"]‘)
 
soup.select(‘a[href^="http://example.com/"]‘)
 
soup.select(‘a[href$="tillie"]‘)
 
soup.select(‘a[href*=".com/el"]‘)
 
 
from bs4.element import Tag
 
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr(‘href‘):
            continue
        yield child
 
tags = soup.find(‘body‘).select("a", _candidate_generator=default_candidate_generator)
print(type(tags), tags)
 
from bs4.element import Tag
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr(‘href‘):
            continue
        yield child
 
tags = soup.find(‘body‘).select("a", _candidate_generator=default_candidate_generator, limit=1)
print(type(tags), tags)

19. 标签的内容

1
2
3
4
5
6
7
8
9
10
11
12
13
# tag = soup.find(‘span‘)
# print(tag.string)          # 获取
# tag.string = ‘new content‘ # 设置
# print(soup)
 
# tag = soup.find(‘body‘)
# print(tag.string)
# tag.string = ‘xxx‘
# print(soup)
 
# tag = soup.find(‘body‘)
# v = tag.stripped_strings  # 递归内部获取所有标签的文本
# print(v)

20.append在当前标签内部追加一个标签

1
2
3
4
5
6
7
8
9
10
# tag = soup.find(‘body‘)
# tag.append(soup.find(‘a‘))
# print(soup)
#
# from bs4.element import Tag
# obj = Tag(name=‘i‘,attrs={‘id‘: ‘it‘})
# obj.string = ‘我是一个新来的‘
# tag = soup.find(‘body‘)
# tag.append(obj)
# print(soup)

21.insert在当前标签内部指定位置插入一个标签

1
2
3
4
5
6
# from bs4.element import Tag
# obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘})
# obj.string = ‘我是一个新来的‘
# tag = soup.find(‘body‘)
# tag.insert(2, obj)
# print(soup)

22. insert_after,insert_before 在当前标签后面或前面插入

1
2
3
4
5
6
7
# from bs4.element import Tag
# obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘})
# obj.string = ‘我是一个新来的‘
# tag = soup.find(‘body‘)
# # tag.insert_before(obj)
# tag.insert_after(obj)
# print(soup)

23. replace_with 在当前标签替换为指定标签

1
2
3
4
5
6
# from bs4.element import Tag
# obj = Tag(name=‘i‘, attrs={‘id‘: ‘it‘})
# obj.string = ‘我是一个新来的‘
# tag = soup.find(‘div‘)
# tag.replace_with(obj)
# print(soup)

24. 创建标签之间的关系

1
2
3
4
# tag = soup.find(‘div‘)
# a = soup.find(‘a‘)
# tag.setup(previous_sibling=a)
# print(tag.previous_sibling)

25. wrap,将指定标签把当前标签包裹起来

1
2
3
4
5
6
7
8
9
10
11
# from bs4.element import Tag
# obj1 = Tag(name=‘div‘, attrs={‘id‘: ‘it‘})
# obj1.string = ‘我是一个新来的‘
#
# tag = soup.find(‘a‘)
# v = tag.wrap(obj1)
# print(soup)
 
# tag = soup.find(‘a‘)
# v = tag.wrap(soup.find(‘p‘))
# print(soup)

26. unwrap,去掉当前标签,将保留其包裹的标签

1
2
3
# tag = soup.find(‘a‘)
# v = tag.unwrap()
# print(soup)

更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/

 

五、示例

把下面代码,加入到代码中,可以下载网站源码到本地分析

with open(‘weixin.html‘,‘wb‘) as f:
    f.write(wx_login_page.content)

1、爬取汽车之家新闻频道页面里面的图片

技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*- 
# Author: nulige

import requests
from bs4 import BeautifulSoup

response = requests.get(
    url=‘http://www.autohome.com.cn/news/‘
)

#解决爬虫乱码问题
response.encoding = response.apparent_encoding  

# 生成Soup对象,
soup = BeautifulSoup(response.text, features=‘html.parser‘)


# find查找第一个符合条件的对象
target = soup.find(id=‘auto-channel-lazyload-article‘)

#find_all查找所有符合的对象,查找出来的值在列表中
li_list = target.find_all(‘li‘)

#循环拿到具体每个对象
for i in li_list:
    a = i.find(‘a‘)

    if a:
        print(a.attrs.get(‘href‘))   #    # .attrs查找到属性
        txt = a.find(‘h3‘).text  # 是对象
        img_url = a.find(‘img‘).attrs.get(‘src‘)
        print(img_url)
        # 再发一个请求
        img_response = requests.get(url=img_url)
        import uuid
        file_name = str(uuid.uuid4()) + ‘.jpg‘
        with open(file_name,‘wb‘) as f:
            f.write(img_response.content)


备注:
 # 找到第一个a标签
  tag1 = soup.find(name=‘a‘)
 
  # 找到所有的a标签
  tag2 = soup.find_all(name=‘a‘)
 
  # 找到id=link2的标签
  tag3 = soup.select(‘#link2‘)
技术分享

2、自动登陆抽屉网

技术分享
#!/usr/bin/env python
# -*- coding: utf8 -*-
# __Author: "Skiler Hao"
# date: 2017/5/10 11:06
import requests
from bs4 import BeautifulSoup

# 第一次请求
first_request_response = requests.get(
    url = ‘http://dig.chouti.com/‘,
)
# 获取第一次登录获取的cookie内容
firstget_cookie_dict = first_request_response.cookies.get_dict()


# 登录POST请求
post_dict = {
    ‘phone‘: ‘8618811*****‘, #86+手机号码
    ‘password‘: ‘******‘,    #密码
    ‘oneMonth‘: 1
}
# 发送请求,携带cookie和数据
login_response = requests.post(
    url = ‘http://dig.chouti.com/login‘,
    data = post_dict,
    cookies= firstget_cookie_dict
)


# 点赞请求
dianzan_response = requests.post(
    url = ‘http://dig.chouti.com/link/vote?linksId=11832246‘,
    cookies= firstget_cookie_dict
)
print(dianzan_response.text)


# 取消点赞
cancel_dianzan_response = requests.post(
    url = ‘http://dig.chouti.com/vote/cancel/vote.do‘,
    cookies= firstget_cookie_dict,
    data={‘linksId‘:11832246}
)
print(cancel_dianzan_response.text)


# 获取个人信息
get_person_info_resonse = requests.get(
    url = ‘http://dig.chouti.com/profile‘,
    cookies= firstget_cookie_dict,
)
# 按照某种encoding方式编码
get_person_info_resonse.encoding = get_person_info_resonse.apparent_encoding
# 将其内容放入BS中进行解析
person_info_site = BeautifulSoup(get_person_info_resonse.text,features=‘html.parser‘)
# 找到之后可以做任何处理,获取配置中的nickname
nickname_tag = person_info_site.find(id=‘nick‘)
nickname = person_info_site.find(id=‘nick‘).attrs.get(‘value‘)
print(‘昵称:‘,nickname)

# 更新自己在抽屉上的个人信息
personal_info = {
    ‘jid‘: ‘cdu_49017916793‘,
    ‘nick‘: ‘努力哥‘,
    ‘imgUrl‘: ‘http://img2.chouti.com/CHOUTI_90A38B32473A49B7B26A49F46B34268C_W585H359=C60x60.png‘,
# http://img2.chouti.com/CHOUTI_BAE7F736FE7B48E49D1CEE459020F3B0_W390H390=48x48.jpg
    ‘sex‘: True,
    ‘proveName‘: ‘北京‘,
    ‘cityName‘: ‘澳门‘,
    ‘sign‘: ‘黑hi呃呃哈发到付‘
}
update_person_info_resonse = requests.post(
    url = ‘http://dig.chouti.com/profile/update‘,
    cookies= firstget_cookie_dict,
    data=personal_info
)
print(update_person_info_resonse.text)

#########################Session方式登录抽屉#########################

session = requests.Session()
# 先登陆一下抽屉网
i1 = session.get(
    url=‘http://dig.chouti.com/‘
)
# 模拟抽屉登录
login_post_dict = {
    ‘phone‘: ‘86188116*****‘, #86+手机号码
    ‘password‘: ‘******‘,  #密码
    ‘oneMonth‘: 1
}
i2 = session.post(
    url=‘http://dig.chouti.com/login‘,
    data=login_post_dict,
)
技术分享

 3、自动登陆GitHub

技术分享
#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/10 16:32

import requests
from bs4 import BeautifulSoup
# GitHub是基于authenticity_token,具有预防csrf_token的功能

# 首先访问页面,获取页面上的authenticity_token
i1 = requests.get(‘https://github.com/login‘)
# print(i1.content)
login_page_res = BeautifulSoup(i1.content,features=‘lxml‘)
authenticity_token = login_page_res.find(name=‘input‘,attrs={‘name‘:‘authenticity_token‘}).attrs.get(‘value‘)
cookies1 = i1.cookies.get_dict()

# print(authenticity_token)
form_data = {
    ‘commit‘: ‘Sign in‘,
    ‘utf8‘: ‘?‘,
    ‘authenticity_token‘: authenticity_token,
    ‘login‘: ‘*****‘,
    ‘password‘: ‘******‘,
}

# 将数据封装在post请求中进行登录,而且要加上cookie
login_res = requests.post(
    url=‘https://github.com/session‘,
    data=form_data,
    cookies=cookies1
)
# print(login_res.text)
# 拿到页面中的自己的项目列表
login_page_res = BeautifulSoup(login_res.content,features=‘lxml‘)
list_info = login_page_res.select("span .repo")
for i in list_info:
    print(i.text)
cookies1 = i1.cookies.get_dict()
技术分享

4、自动登录cnblog

博客园站用了一个rsa算法的加密模块,所以安装加密模块。才能验证登录。

pip3 install rsa

代码:

技术分享
#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/11 10:51
import re
import json
import base64
import rsa
import requests
from bs4 import BeautifulSoup

# 负责模仿前端js模块对账号和密码加密
def js_enrypt(text):
    # 先从博客园拿到public key
    public_key = ‘MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCp0wHYbg/NOPO3nzMD3dndwS0MccuMeXCHgVlGOoYyFwLdS24Im2e7YyhB0wrUsyYf0/nhzCzBK8ZC9eCWqd0aHbdgOQT6CuFQBMjbyGYvlVYU2ZP7kG9Ft6YV6oc9ambuO7nPZh+bvXH0zDKfi02prknrScAKC0XhadTHT3Al0QIDAQAB‘

    # 将拿到的一串字符,转换成64进制
    der = base64.standard_b64decode(public_key)

    # 再将其转换成数字,作为公钥加载
    pk = rsa.PublicKey.load_pkcs1_openssl_der(der)

    # 运用公钥对传进来的文字进行加密
    v1 = rsa.encrypt(bytes(text,‘utf8‘),pk)

    # 对加密后的内容进行解码
    value = base64.encodebytes(v1).replace(b‘\n‘,b‘‘)

    value = value.decode(‘utf8‘)

    # 将其返回
    return value

session = requests.Session()

# 写个错误的用户名和密码,提交一下。就找到提交数据
post_data = {
    ‘input1‘: js_enrypt(‘******‘),
    ‘input2‘: js_enrypt(‘******‘),
    ‘remember‘: True
}

# 发送一次请求,获取ajax发送post时要发送的VerificationToken,需要将其放在请求头部
login_page = session.get(
    url=‘https://passport.cnblogs.com/user/signin‘,
)
VerificationToken = re.compile("‘VerificationToken‘: ‘(.*)‘")
v = re.search(VerificationToken,login_page.text)
VerificationToken = v.group(1)

# 发送请求,注意将数据json序列化,因为Accept:application/json
login_post_res = session.post(
    url=‘https://passport.cnblogs.com/user/signin‘,
    data=json.dumps(post_data),
    headers={
        ‘VerificationToken‘: VerificationToken,
        ‘X-Requested-With‘: ‘XMLHttpRequest‘,
        ‘Content-Type‘: ‘application/json; charset=UTF-8‘
    }
)

# 登录账号设置页
setting_page = session.get(
    url=‘https://home.cnblogs.com/set/account/‘,
)

soup = BeautifulSoup(setting_page.content,features=‘lxml‘)
name = soup.select_one(‘#loginName_display_block div‘).get_text().strip()
print(‘你的账号名为:‘,name)
技术分享

5、自动登录知乎

技术分享
#!/usr/bin/env python
# -*- coding: utf8 -*-

import requests
from bs4 import BeautifulSoup

session = requests.Session()

# 知乎会查看你的是否有用户客户端信息,没有不会让爬的
signin_page = session.get(
    url=‘https://www.zhihu.com/#signin‘,
    headers={
        ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘,
    }
)

# 拿到页面的_xrf为了防止csrf攻击,post数据的时候需要提供
signin_page_tag = BeautifulSoup(signin_page.content,features=‘lxml‘)
xsrf_code = signin_page_tag.find(‘input‘,attrs={‘name‘:‘_xsrf‘}).attrs.get(‘value‘)

# 从知乎服务器获取验证码照片,发送请求POST,发现需要传入以下三个参数
# r:1494416****
# type:login
# lang:cn
import time
current_time = time.time()
yanzhengma = session.get(
    url=‘https://www.zhihu.com/captcha.gif‘,
    params={
        ‘r‘: current_time,
        ‘type‘: ‘login‘,
        # ‘lang‘: ‘en‘ # 使用不同的语言,cn最为复杂,不加的话,最容易识别,en为立体的英文也不好识别
    },
    headers={
        ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘,
    }
)

# 将从服务器收到的验证码写入文件,可以查看啦
with open(‘zhihu.gif‘, ‘wb‘) as f:
    f.write(yanzhengma.content)

captcha = input("请打开照片查看验证码:")
form_data = {
    ‘_xsrf‘: xsrf_code,
    ‘password‘: ‘********‘,
    ‘captcha‘: captcha,

    # ‘captcha‘: ‘{"img_size": [200, 44], "input_points": [[40.2, 34.2], [156.2, 28.2], [138.2, 24.2]]}‘,
    # ‘captcha_type‘: ‘cn‘,  # 如果为中文的验证码比较复杂

    ‘phone_num‘: ‘***********‘,  #填手机号码登录
    # ‘email‘:"sddasd@123.com"  # 邮箱登录的方式
}

login_response = session.post(
    url=‘https://www.zhihu.com/login/phone_num‘, #前端会根据你的数据类型选择用邮箱或者手机号码登录
    # url=‘https://www.zhihu.com/login/phone_num‘
    data=form_data,
    headers = {
        ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘,
    }
)
index_page = session.get(
    url=‘https://www.zhihu.com/‘,
    headers={
        ‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36‘,
    }
)
index_page_tag = BeautifulSoup(index_page.content,features=‘lxml‘)
print(index_page_tag)
技术分享

运行程序后,输入验证码。登录成功后,搜索用户名称,能找到我多个相同的用户名称,就说明登录成功。

技术分享

web爬虫,BeautifulSoup

标签:epo   cti   -o   中文   weixin   tags   person   attr   element   

原文地址:http://www.cnblogs.com/zjltt/p/7700155.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!