标签:zrc eui ahci awd mku uid 定义 evm ssis
然后在网上找到了符合论文中符号的代码。
function Sest = cosaomp(Phi,u,K,tol,maxiterations) Sest = zeros(size(Phi,2),1); v = u; t = 1; numericalprecision = 1e-12; T = []; while (t <= maxiterations) && (norm(v)/norm(u) > tol) y = abs(Phi‘*v); [vals,z] = sort(y,‘descend‘); Omega = find(y >= vals(2*K) & y > numericalprecision); T = union(Omega,T); b = pinv(Phi(:,T))*u; [vals,z] = sort(abs(b),‘descend‘); Kgoodindices = (abs(b) >= vals(K) & abs(b) > numericalprecision); T = T(Kgoodindices); Sest = zeros(size(Phi,2),1); phit = Phi(:,T); b = pinv(phit)*u; Sest(T) = b; v = u - phit*b; t = t+1; end
接下来综合代码我准备强行解释一波论文算法的伪代码流程,哎呀半懂半懂希望以后要全懂全懂。
步骤(5)稍微有点绕,综合代码理解一下还是不难的。
function [ theta ] = CS_CoSaMP( y,A,K ) %CS_CoSaOMP Summary of this function goes here %Created by jbb0523@@2015-04-29 %Version: 1.1 modified by jbb0523 @2015-05-09 % Detailed explanation goes here % y = Phi * x % x = Psi * theta % y = Phi*Psi * theta % 令 A = Phi*Psi, 则y=A*theta % K is the sparsity level % 现在已知y和A,求theta % Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from % incomplete and inaccurate samples[J].Applied and Computation Harmonic % Analysis,2009,26:301-321. [y_rows,y_columns] = size(y); if y_rows<y_columns y = y‘;%y should be a column vector end [M,N] = size(A);%传感矩阵A为M*N矩阵 theta = zeros(N,1);%用来存储恢复的theta(列向量) Pos_theta = [];%用来迭代过程中存储A被选择的列序号 r_n = y;%初始化残差(residual)为y for kk=1:K%最多迭代K次 %(1) Identification product = A‘*r_n;%传感矩阵A各列与残差的内积 [val,pos]=sort(abs(product),‘descend‘); Js = pos(1:2*K);%选出内积值最大的2K列 %(2) Support Merger Is = union(Pos_theta,Js);%Pos_theta与Js并集 %(3) Estimation %At的行数要大于列数,此为最小二乘的基础(列线性无关) if length(Is)<=M At = A(:,Is);%将A的这几列组成矩阵At else%At的列数大于行数,列必为线性相关的,At‘*At将不可逆 if kk == 1 theta_ls = 0; end break;%跳出for循环 end %y=At*theta,以下求theta的最小二乘解(Least Square) theta_ls = (At‘*At)^(-1)*At‘*y;%最小二乘解 %(4) Pruning [val,pos]=sort(abs(theta_ls),‘descend‘); %(5) Sample Update Pos_theta = Is(pos(1:K)); theta_ls = theta_ls(pos(1:K)); %At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影 r_n = y - At(:,pos(1:K))*theta_ls;%更新残差 if norm(r_n)<1e-6%Repeat the steps until r=0 break;%跳出for循环 end end theta(Pos_theta)=theta_ls;%恢复出的theta end
%压缩感知重构算法测试 clear all;close all;clc; M = 64;%观测值个数 N = 256;%信号x的长度 K = 12;%信号x的稀疏度 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta Phi = randn(M,N);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y %% 恢复重构信号x tic theta = CS_CoSaMP( y,A,K ); x_r = Psi * theta;% x=Psi * theta toc %% 绘图 figure; plot(x_r,‘k.-‘);%绘出x的恢复信号 hold on; plot(x,‘r‘);%绘出原信号x hold off; legend(‘Recovery‘,‘Original‘) fprintf(‘\n恢复残差:‘); norm(x_r-x)%恢复残差
运行结果如下:(信号为随机生成,所以每次结果均不一样)
clear all;close all;clc; %% 参数配置初始化 CNT = 1000;%对于每组(K,M,N),重复迭代次数 N = 256;%信号x的长度 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta K_set = [4,12,20,28,36];%信号x的稀疏度集合 Percentage = zeros(length(K_set),N);%存储恢复成功概率 %% 主循环,遍历每组(K,M,N) tic for kk = 1:length(K_set) K = K_set(kk);%本次稀疏度 M_set = 2*K:5:N;%M没必要全部遍历,每隔5测试一个就可以了 PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率 for mm = 1:length(M_set) M = M_set(mm);%本次观测值个数 fprintf(‘K=%d,M=%d\n‘,K,M); P = 0; for cnt = 1:CNT %每个观测值个数均运行CNT次 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的 Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y theta = CS_CoSaMP(y,A,K);%恢复重构信号theta x_r = Psi * theta;% x=Psi * theta if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功 P = P + 1; end end PercentageK(mm) = P/CNT*100;%计算恢复概率 end Percentage(kk,1:length(M_set)) = PercentageK; end toc save CoSaMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来 %% 绘图 S = [‘-ks‘;‘-ko‘;‘-kd‘;‘-kv‘;‘-k*‘]; figure; for kk = 1:length(K_set) K = K_set(kk); M_set = 2*K:5:N; L_Mset = length(M_set); plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号 hold on; end
本程序运行结果:
标签:zrc eui ahci awd mku uid 定义 evm ssis
原文地址:http://www.cnblogs.com/wwf828/p/7488870.html