码迷,mamicode.com
首页 > 编程语言 > 详细

Python机器学习库scikit-learn实践

时间:2017-11-03 13:11:32      阅读:297      评论:0      收藏:0      [点我收藏+]

标签:适应   zip   kernel   blank   测试   import   params   链接   round   

一、概述

       机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出。当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘。随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持、改进和推广。

       以最广泛的分类算法为例,大致可以分为线性和非线性两大派别。线性算法有著名的逻辑回归、朴素贝叶斯、最大熵等,非线性算法有随机森林、决策树、神经网络、核机器等等。线性算法举的大旗是训练和预测的效率比较高,但最终效果对特征的依赖程度较高,需要数据在特征层面上是线性可分的。因此,使用线性算法需要在特征工程上下不少功夫,尽量对特征进行选择、变换或者组合等使得特征具有区分性。而非线性算法则牛逼点,可以建模复杂的分类面,从而能更好的拟合数据。

       那在我们选择了特征的基础上,哪个机器学习算法能取得更好的效果呢?谁也不知道。实践是检验哪个好的不二标准。那难道要苦逼到写五六个机器学习的代码吗?No,机器学习社区的力量是强大的,码农界的共识是不重复造轮子!因此,对某些较为成熟的算法,总有某些优秀的库可以直接使用,省去了大伙调研的大部分时间。

       基于目前使用python较多,而python界中远近闻名的机器学习库要数scikit-learn莫属了。这个库优点很多。简单易用,接口抽象得非常好,而且文档支持实在感人。本文中,我们可以封装其中的很多机器学习算法,然后进行一次性测试,从而便于分析取优。当然了,针对具体算法,超参调优也非常重要。

 

二、Scikit-learn的python实践

2.1、Python的准备工作

       Python一个备受欢迎的点是社区支持很多,有非常多优秀的库或者模块。但是某些库之间有时候也存在依赖,所以要安装这些库也是挺繁琐的过程。但总有人忍受不了这种繁琐,都会开发出不少自动化的工具来节省各位客官的时间。其中,个人总结,安装一个python的库有以下三种方法:

1)Anaconda

       这是一个非常齐全的python发行版本,最新的版本提供了多达195个流行的python包,包含了我们常用的numpy、scipy等等科学计算的包。有了它,妈妈再也不用担心我焦头烂额地安装一个又一个依赖包了。Anaconda在手,轻松我有!下载地址如下:http://www.continuum.io/downloads

2)Pip

  可参考:http://www.cnblogs.com/kylinsblog/p/7754697.html

       使用过Ubuntu的人,对apt-get的爱只有自己懂。其实对Python的库的下载和安装可以借助pip工具的。需要安装什么库,直接下载和安装一条龙服务。在pip官网https://pypi.python.org/pypi/pip下载安装即可。未来的需求就在#pip install xx 中。

SaintKings-Mac-mini:nlp saintking$ pip install sklearn

3)源码包

       如果上述两种方法都没有找到你的库,那你直接把库的源码下载回来,解压,然后在目录中会有个setup.py文件。执行#python setup.py install 即可把这个库安装到python的默认库目录中。

2.2、Scikit-learn的测试

       scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:

classifiers = {NB:naive_bayes_classifier,   
                  KNN:knn_classifier,  
                   LR:logistic_regression_classifier,  
                   RF:random_forest_classifier,  
                   DT:decision_tree_classifier,  
                  SVM:svm_classifier,  
                SVMCV:svm_cross_validation,  
                 GBDT:gradient_boosting_classifier  
    }  

 train_test.py

#!usr/bin/env python  
#-*- coding: utf-8 -*-  
  
import sys  
import os  
import time  
from sklearn import metrics  
import numpy as np  
import cPickle as pickle  
  
reload(sys)  
sys.setdefaultencoding(utf8)  
  
# Multinomial Naive Bayes Classifier  
def naive_bayes_classifier(train_x, train_y):  
    from sklearn.naive_bayes import MultinomialNB  
    model = MultinomialNB(alpha=0.01)  
    model.fit(train_x, train_y)  
    return model  
  
  
# KNN Classifier  
def knn_classifier(train_x, train_y):  
    from sklearn.neighbors import KNeighborsClassifier  
    model = KNeighborsClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# Logistic Regression Classifier  
def logistic_regression_classifier(train_x, train_y):  
    from sklearn.linear_model import LogisticRegression  
    model = LogisticRegression(penalty=l2)  
    model.fit(train_x, train_y)  
    return model  
  
  
# Random Forest Classifier  
def random_forest_classifier(train_x, train_y):  
    from sklearn.ensemble import RandomForestClassifier  
    model = RandomForestClassifier(n_estimators=8)  
    model.fit(train_x, train_y)  
    return model  
  
  
# Decision Tree Classifier  
def decision_tree_classifier(train_x, train_y):  
    from sklearn import tree  
    model = tree.DecisionTreeClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# GBDT(Gradient Boosting Decision Tree) Classifier  
def gradient_boosting_classifier(train_x, train_y):  
    from sklearn.ensemble import GradientBoostingClassifier  
    model = GradientBoostingClassifier(n_estimators=200)  
    model.fit(train_x, train_y)  
    return model  
  
  
# SVM Classifier  
def svm_classifier(train_x, train_y):  
    from sklearn.svm import SVC  
    model = SVC(kernel=rbf, probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
# SVM Classifier using cross validation  
def svm_cross_validation(train_x, train_y):  
    from sklearn.grid_search import GridSearchCV  
    from sklearn.svm import SVC  
    model = SVC(kernel=rbf, probability=True)  
    param_grid = {C: [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], gamma: [0.001, 0.0001]}  
    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)  
    grid_search.fit(train_x, train_y)  
    best_parameters = grid_search.best_estimator_.get_params()  
    for para, val in best_parameters.items():  
        print para, val  
    model = SVC(kernel=rbf, C=best_parameters[C], gamma=best_parameters[gamma], probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
def read_data(data_file):  
    import gzip  
    f = gzip.open(data_file, "rb")  
    train, val, test = pickle.load(f)  
    f.close()  
    train_x = train[0]  
    train_y = train[1]  
    test_x = test[0]  
    test_y = test[1]  
    return train_x, train_y, test_x, test_y  
      
if __name__ == __main__:  
    data_file = "mnist.pkl.gz"  
    thresh = 0.5  
    model_save_file = None  
    model_save = {}  
      
    test_classifiers = [NB, KNN, LR, RF, DT, SVM, GBDT]  
    classifiers = {NB:naive_bayes_classifier,   
                  KNN:knn_classifier,  
                   LR:logistic_regression_classifier,  
                   RF:random_forest_classifier,  
                   DT:decision_tree_classifier,  
                  SVM:svm_classifier,  
                SVMCV:svm_cross_validation,  
                 GBDT:gradient_boosting_classifier  
    }  
      
    print reading training and testing data...  
    train_x, train_y, test_x, test_y = read_data(data_file)  
    num_train, num_feat = train_x.shape  
    num_test, num_feat = test_x.shape  
    is_binary_class = (len(np.unique(train_y)) == 2)  
    print ******************** Data Info *********************  
    print #training data: %d, #testing_data: %d, dimension: %d % (num_train, num_test, num_feat)  
      
    for classifier in test_classifiers:  
        print ******************* %s ******************** % classifier  
        start_time = time.time()  
        model = classifiers[classifier](train_x, train_y)  
        print training took %fs! % (time.time() - start_time)  
        predict = model.predict(test_x)  
        if model_save_file != None:  
            model_save[classifier] = model  
        if is_binary_class:  
            precision = metrics.precision_score(test_y, predict)  
            recall = metrics.recall_score(test_y, predict)  
            print precision: %.2f%%, recall: %.2f%% % (100 * precision, 100 * recall)  
        accuracy = metrics.accuracy_score(test_y, predict)  
        print accuracy: %.2f%% % (100 * accuracy)   
  
    if model_save_file != None:  
        pickle.dump(model_save, open(model_save_file, wb))  

四、测试结果

       本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。

   http://yann.lecun.com/exdb/mnist/

  链接: https://pan.baidu.com/s/1dEKHD8d 密码: 83b9

       代码运行结果如下:

reading training and testing data...  
******************** Data Info *********************  
#training data: 50000, #testing_data: 10000, dimension: 784  
******************* NB ********************  
training took 0.287000s!  
accuracy: 83.69%  
******************* KNN ********************  
training took 31.991000s!  
accuracy: 96.64%  
******************* LR ********************  
training took 101.282000s!  
accuracy: 91.99%  
******************* RF ********************  
training took 5.442000s!  
accuracy: 93.78%  
******************* DT ********************  
training took 28.326000s!  
accuracy: 87.23%  
******************* SVM ********************  
training took 3152.369000s!  
accuracy: 94.35%  
******************* GBDT ********************  
training took 7623.761000s!  
accuracy: 96.18%  

在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。三个臭皮匠赛过诸葛亮,还是被验证有道理的,特别是三个臭皮匠还能力互补的时候!

       还有一个在实际中非常有效的方法,就是融合这些分类器,再进行决策。例如简单的投票,效果都非常不错。建议在实践中,大家都可以尝试下。

Python机器学习库scikit-learn实践

标签:适应   zip   kernel   blank   测试   import   params   链接   round   

原文地址:http://www.cnblogs.com/kylinsblog/p/7777351.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!