码迷,mamicode.com
首页 > 编程语言 > 详细

Python Decorator

时间:2017-11-05 23:26:19      阅读:202      评论:0      收藏:0      [点我收藏+]

标签:ssm   详解   学习   www.   cme   html   出错   函数式   higher   

由于没时间编写,就把几张写的不错的文章摘录整合到一起。原文地址:Python Decorator python decorator心得体会   可爱的 Python: Decorator 简化元编程

Python之美--Decorator深入详解(一)   Python Decorators(二):Decorator参数   Python Decorator初体验

  Python的修饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西。在认识装饰器之前,我们先来点感性认识,看一个Python修饰器的Hello World的代码。

下面是代码:文件名:hello.py
def hello(fn):
    def wrapper():
        print "hello, %s" % fn.__name__
        fn()
        print "goodby, %s" % fn.__name__
    return wrapper
 
@hello
def foo():
    print "i am foo"
 
foo()

 当你运行代码,你会看到如下输出:

[chenaho@chenhao-air]$ python hello.py
hello, foo
i am foo
goodby, foo

 你可以看到如下的东西:
  1)函数foo前面有个@hello的“注解”,hello就是我们前面定义的函数hello;
  2)在hello函数中,其需要一个fn的参数(这就用来做回调的函数);
  3)hello函数中返回了一个inner函数wrapper,这个wrapper函数回调了传进来的fn,并在回调前后加了两条语句。

Decorator 的本质

  对于Python的这个@注解语法糖- Syntactic Sugar 来说,当你在用某个@decorator来修饰某个函数func时,如下所示:

@decorator
def func():
    pass

其解释器会解释成下面这样的语句:

func = decorator(func)

   了然,这不就是把一个函数当参数传到另一个函数中,然后再回调吗?是的,但是,我们需要注意,那里还有一个赋值语句,把decorator这个函数的返回值赋值回了原来的func。 根据《函数式编程》中的first class functions中的定义的,你可以把函数当成变量来使用,所以,decorator必需得返回了一个函数出来给func,这就是所谓的higher order function 高阶函数,不然,后面当func()调用的时候就会出错。 就我们上面那个hello.py里的例子来说,

@hello
def foo():
    print "i am foo"

 被解释成了:

foo = hello(foo)

 是的,这是一条语句,而且还被执行了。你如果不信的话,你可以写这样的程序来试试看:

def fuck(fn):
    print "fuck %s!" % fn.__name__[::-1].upper()
 
@fuck
def wfg():
    pass

 没了,就上面这段代码,没有调用wfg()的语句,你会发现, fuck函数被调用了,而且还很NB地输出了我们每个人的心声!

  再回到我们hello.py的那个例子,我们可以看到,hello(foo)返回了wrapper()函数,所以,foo其实变成了wrapper的一个变量,而后面的foo()执行其实变成了wrapper()。知道这点本质,当你看到有多个decorator或是带参数的decorator,你也就不会害怕了。

比如:多个decorator:

@decorator_one
@decorator_two
def func():
    pass

 相当于:

func = decorator_one(decorator_two(func))

 比如:带参数的decorator:

@decorator(arg1, arg2)
def func():
    pass

 相当于:

func = decorator(arg1,arg2)(func)

 这意味着decorator(arg1, arg2)这个函数需要返回一个“真正的decorator”。

带参数及多个Decrorator

我们来看一个有点意义的例子:

def makeHtmlTag(tag, *args, **kwds):
    def real_decorator(fn):
        css_class = " class=‘{0}‘".format(kwds["css_class"]) if "css_class" in kwds else ""
        def wrapped(*args, **kwds):
            return "<"+tag+css_class+">" + fn(*args, **kwds) + "</"+tag+">"
        return wrapped
    return real_decorator
 
@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
    return "hello world"
 
print hello()
 
# 输出:
# <b class=‘bold_css‘><i class=‘italic_css‘>hello world</i></b>

 在上面这个例子中,我们可以看到:makeHtmlTag有两个参数。所以,为了让 hello = makeHtmlTag(arg1, arg2)(hello) 成功,makeHtmlTag 必需返回一个decorator(这就是为什么我们在makeHtmlTag中加入了real_decorator()的原因),这样一来,我们就可以进入到 decorator 的逻辑中去了—— decorator得返回一个wrapper,wrapper里回调hello。看似那个makeHtmlTag() 写得层层叠叠,但是,已经了解了本质的我们觉得写得很自然。

初识Decorator

  Decorator,修饰符,是在Python2.4中增加的功能,也是pythoner实现元编程的最新方式,同时它也是最简单的元编程方式。为什么是“最简单”呢?是的,其实在Decorator之前就已经
有classmethod()和staticmethod()内置函数,但他们的缺陷是会导致函数名的重复使用(可以看看David Mertz的Charming Python: Decorators make magic easy ),
以下是摘自他本人的原文:

class C:
    def foo(cls, y):
        print "classmethod", cls, y
    foo = classmethod(foo)

  是的,classmethod做的只是函数转换,但是它却让foo这个名字另外出现了2次。记得有一句话是:人类因懒惰而进步。Decorator的诞生,让foo少出现2次。

class C:
    @classmethod
    def foo(cls, y):
        print "classmethod", cls, y

  读者也许已经想到Decorator在python中是怎么处理的了(如果还没头绪的,强烈建议先去看看limodou写的Decorator学习笔记 )。下面我列出4种用法。

单个 Decorator,不带参数

  设想一个情景,你平时去买衣服的时候,跟售货员是怎么对话的呢?售货员会先向你问好,然后你会试穿某件你喜爱的衣服。

def salesgirl(method):
    def serve(*args):
        print "Salesgirl:Hello, what do you want?", method.__name__
        method(*args)
    return serve
   
@salesgirl
def try_this_shirt(size):
    if size < 35:
        print "I: %d inches is to small to me" %(size)
    else:
        print "I:%d inches is just enough" %(size)
try_this_shirt(38) 

结果是:

Salesgirl:Hello, what do you want? try_this_shirt
I:38 inches is just enough

  这只是一个太简单的例子,以至一些“细节”没有处理好,你试穿完了好歹也告诉salesgirl到底要不要买啊。。。这样try_this_shirt方法需要改成带返回值 
(假设是bool类型,True就是要买,False就是不想买),那么salesgirl中的serve也应该带返回值,并且返回值就是 method(*args)。

修改后的salesgirl  

def salesgirl(method):
    def serve(*args):
        print "Salesgirl:Hello, what do you want?", method.__name__
        return method(*args)
    return serve
   
@salesgirl
def try_this_shirt(size):
    if size < 35:
        print "I: %d inches is to small to me" %(size)
        return False
    else:
        print "I:%d inches is just enough" %(size)
        return True
result = try_this_shirt(38)
print "Mum:do you want to buy this?", result

结果是:

Salesgirl:Hello, what do you want? try_this_shirt
I:38 inches is just enough
Mum:do you want to buy this? True

    现在我们的salesgirl还不算合格,她只会给客人打招呼,但是客人要是买衣服了,也不会给他报价;客人不买的话,也应该推荐其他款式!

会报价的salesgirl:

def salesgirl(method):
    def serve(*args):
        print "Salesgirl:Hello, what do you want?", method.__name__
        result = method(*args)
        if result:
            print "Salesgirl: This shirt is 50$."
        else:
            print "Salesgirl: Well, how about trying another style?"
        return result
    return serve
   
@salesgirl
def try_this_shirt(size):
    if size < 35:
        print "I: %d inches is to small to me" %(size)
        return False
    else:
        print "I:%d inches is just enough" %(size)
        return True
result = try_this_shirt(38)
print "Mum:do you want to buy this?", result

结果是:

Salesgirl:Hello, what do you want? try_this_shirt
I:38 inches is just enough
Salesgirl: This shirt is 50$.
Mum:do you want to buy this? True

这样的salesgirl总算是合格了,但离出色还很远,称职的salesgirl是应该对熟客让利,老用户总得有点好处吧?

单个 Decorator,带参数
  会报价并且带折扣的salesgirl:
def salesgirl(discount):
    def expense(method):
        def serve(*args):
            print "Salesgirl:Hello, what do you want?", method.__name__
            result = method(*args)
            if result:
                print "Salesgirl: This shirt is 50$.As an old user, we promised to discount at %d%%" %(discount)
            else:
                print "Salesgirl: Well, how about trying another style?"
            return result
        return serve
    return expense
   
@salesgirl(50)
def try_this_shirt(size):
    if size < 35:
        print "I: %d inches is to small to me" %(size)
        return False
    else:
        print "I:%d inches is just enough" %(size)
        return True
result = try_this_shirt(38)
print "Mum:do you want to buy this?", result
 
结果是:

Salesgirl:Hello, what do you want? try_this_shirt
I:38 inches is just enough
Salesgirl: This shirt is 50$.As an old user, we promised to discount at 50%
Mum:do you want to buy this? True

  这里定义的salesgirl是会给客户50%的折扣,因为salesgirl描述符是带参数,而参数就是折扣。如果你是第一次看到这个 salesgirl,
会被她里面嵌套的2个方法而感到意外,没关系,当你习惯了Decorator之后,一切都变得很亲切啦

  你看,Python的Decorator就是这么简单,没有什么复杂的东西,你也不需要了解过多的东西,使用起来就是那么自然、体贴,但是你觉得上面那个带参数的Decorator的函数嵌套太多了,你受不了。好吧,没事,我们看看下面的方法。

class式的 Decorator(重点)

1、首先,先得说一下,decorator的class方式,还是看个示例:

class myDecorator(object):
 
    def __init__(self, fn):
        print "inside myDecorator.__init__()"
        self.fn = fn
 
    def __call__(self):
        self.fn()
        print "inside myDecorator.__call__()"
 
@myDecorator
def aFunction():
    print "inside aFunction()"
 
print "Finished decorating aFunction()"
 
aFunction()
 
# 输出:
# inside myDecorator.__init__()
# Finished decorating aFunction()
# inside aFunction()
# inside myDecorator.__call__()

 上面这个示例展示了,用类的方式声明一个decorator。我们可以看到这个类中有两个成员:
  1)一个是__init__(),这个方法是在我们给某个函数decorator时被调用,所以,需要有一个fn的参数,也就是被decorator的函数。
  2)一个是__call__(),这个方法是在我们调用被decorator函数时被调用的。
上面输出可以看到整个程序的执行顺序。这看上去要比“函数式”的方式更易读一些。

2、下面,我们来看看用类的方式来重写上面的html.py的代码:html.py

class makeHtmlTagClass(object):
 
    def __init__(self, tag, css_class=""):
        self._tag = tag
        self._css_class = " class=‘{0}‘".format(css_class)                                        if css_class !="" else ""
 
    def __call__(self, fn):
        def wrapped(*args, **kwargs):
            return "<" + self._tag + self._css_class+">"                         + fn(*args, **kwargs) + "</" + self._tag + ">"
        return wrapped
 
@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
    return "Hello, {}".format(name)
 
print hello("Hao Chen")

 上面这段代码中,我们需要注意这几点:
  1)如果decorator有参数的话,__init__() 成员就不能传入fn了,而fn是在__call__的时候传入的。
  2)这段代码还展示了 wrapped(*args, **kwargs) 这种方式来传递被decorator函数的参数。(其中:args是一个参数列表,kwargs是参数dict,具体的细节,请参考Python的文档或是StackOverflow的这个问题,这里就不展开了)

3、用Decorator设置函数的调用参数,你有三种方法可以干这个事:

第一种,通过 **kwargs,这种方法decorator会在kwargs中注入参数。

def decorate_A(function):
    def wrap_function(*args, **kwargs):
        kwargs[‘str‘] = ‘Hello!‘
        return function(*args, **kwargs)
    return wrap_function
 
@decorate_A
def print_message_A(*args, **kwargs):
    print(kwargs[‘str‘])
 
print_message_A()

 第二种,约定好参数,直接修改参数

def decorate_B(function):
    def wrap_function(*args, **kwargs):
        str = ‘Hello!‘
        return function(str, *args, **kwargs)
    return wrap_function
 
@decorate_B
def print_message_B(str, *args, **kwargs):
    print(str)
 
print_message_B()

 第三种,通过 *args 注入

def decorate_C(function):
    def wrap_function(*args, **kwargs):
        str = ‘Hello!‘
        #args.insert(1, str)
        args = args +(str,)
        return function(*args, **kwargs)
    return wrap_function
 
class Printer:
    @decorate_C
    def print_message(self, str, *args, **kwargs):
        print(str)
 
p = Printer()
p.print_message()

 Decorator的副作用

  到这里,我相信你应该了解了整个Python的decorator的原理了。相信你也会发现,被decorator的函数其实已经是另外一个函数了,对于最前面那个hello.py的例子来说,如果你查询一下foo.__name__的话,你会发现其输出的是“wrapper”,而不是我们期望的“foo”,这会给我们的程序埋一些坑。所以,Python的functool包中提供了一个叫wrap的decorator来消除这样的副作用。下面是我们新版本的hello.py。

文件名:hello.py
from functools import wraps
def hello(fn):
    @wraps(fn)
    def wrapper():
        print "hello, %s" % fn.__name__
        fn()
        print "goodby, %s" % fn.__name__
    return wrapper
 
@hello
def foo():
    ‘‘‘foo help doc‘‘‘
    print "i am foo"
    pass
 
foo()
print foo.__name__ #输出 foo
print foo.__doc__  #输出 foo help doc

 当然,即使是你用了functools的wraps,也不能完全消除这样的副作用。来看下面这个示例:

from inspect import getmembers, getargspec
from functools import wraps
 
def wraps_decorator(f):
    @wraps(f)
    def wraps_wrapper(*args, **kwargs):
        return f(*args, **kwargs)
    return wraps_wrapper
 
class SomeClass(object):
    @wraps_decorator
    def method(self, x, y):
        pass
 
obj = SomeClass()
for name, func in getmembers(obj, predicate=inspect.ismethod):
    print "Member Name: %s" % name
    print "Func Name: %s" % func.func_name
    print "Args: %s" % getargspec(func)[0]
 
# 输出:
# Member Name: method
# Func Name: method
# Args: []

 你会发现,即使是你你用了functools的wraps,你在用getargspec时,参数也不见了。要修正这一问,我们还得用Python的反射来解决,下面是相关的代码:

def get_true_argspec(method):
    argspec = inspect.getargspec(method)
    args = argspec[0]
    if args and args[0] == ‘self‘:
        return argspec
    if hasattr(method, ‘__func__‘):
        method = method.__func__
    if not hasattr(method, ‘func_closure‘) or method.func_closure is None:
        raise Exception("No closure for method.")
 
    method = method.func_closure[0].cell_contents
    return get_true_argspec(method)

 当然,我相信大多数人的程序都不会去getargspec。所以,用functools的wraps应该够用了。一些decorator的示例。好了,现在我们来看一下各种decorator的例子:给函数调用做缓存。这个例实在是太经典了,整个网上都用这个例子做decorator的经典范例,因为太经典了,所以,我这篇文章也不能免俗。

from functools import wraps
def memo(fn):
    cache = {}
    miss = object()
 
    @wraps(fn)
    def wrapper(*args):
        result = cache.get(args, miss)
        if result is miss:
            result = fn(*args)
            cache[args] = result
        return result
 
    return wrapper
 
@memo
def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

  上面这个例子中,是一个斐波拉契数例的递归算法。我们知道,这个递归是相当没有效率的,因为会重复调用。比如:我们要计算fib(5),于是其分解成fib(4) + fib(3),而fib(4)分解成fib(3)+fib(2),fib(3)又分解成fib(2)+fib(1)…… 你可看到,基本上来说,fib(3), fib(2), fib(1)在整个递归过程中被调用了两次。而我们用decorator,在调用函数前查询一下缓存,如果没有才调用了,有了就从缓存中返回值。一下子,这个递归从二叉树式的递归成了线性的递归。

Profiler的例子

  这个例子没什么高深的,就是实用一些。

import cProfile, pstats, StringIO
 
def profiler(func):
    def wrapper(*args, **kwargs):
        datafn = func.__name__ + ".profile" # Name the data file
        prof = cProfile.Profile()
        retval = prof.runcall(func, *args, **kwargs)
        #prof.dump_stats(datafn)
        s = StringIO.StringIO()
        sortby = ‘cumulative‘
        ps = pstats.Stats(prof, stream=s).sort_stats(sortby)
        ps.print_stats()
        print s.getvalue()
        return retval
 
    return wrapper

 注册回调函数

下面这个示例展示了通过URL的路由来调用相关注册的函数示例:

class MyApp():
    def __init__(self):
        self.func_map = {}
 
    def register(self, name):
        def func_wrapper(func):
            self.func_map[name] = func
            return func
        return func_wrapper
 
    def call_method(self, name=None):
        func = self.func_map.get(name, None)
        if func is None:
            raise Exception("No function registered against - " + str(name))
        return func()
 
app = MyApp()
 
@app.register(‘/‘)
def main_page_func():
    return "This is the main page."
 
@app.register(‘/next_page‘)
def next_page_func():
    return "This is the next page."
 
print app.call_method(‘/‘)
print app.call_method(‘/next_page‘)

 注意:
  1)上面这个示例中,用类的实例来做decorator。
  2)decorator类中没有__call__(),但是wrapper返回了原函数。所以,原函数没有发生任何变化。

给函数打日志
下面这个示例演示了一个logger的decorator,这个decorator输出了函数名,参数,返回值,和运行时间。

from functools import wraps
def logger(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        ts = time.time()
        result = fn(*args, **kwargs)
        te = time.time()
        print "function      = {0}".format(fn.__name__)
        print "    arguments = {0} {1}".format(args, kwargs)
        print "    return    = {0}".format(result)
        print "    time      = %.6f sec" % (te-ts)
        return result
    return wrapper
 
@logger
def multipy(x, y):
    return x * y
 
@logger
def sum_num(n):
    s = 0
    for i in xrange(n+1):
        s += i
    return s
 
print multipy(2, 10)
print sum_num(100)
print sum_num(10000000)

 上面那个打日志还是有点粗糙,让我们看一个更好一点的(带log level参数的):

import inspect
def get_line_number():
    return inspect.currentframe().f_back.f_back.f_lineno
 
def logger(loglevel):
    def log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            ts = time.time()
            result = fn(*args, **kwargs)
            te = time.time()
            print "function   = " + fn.__name__,
            print "    arguments = {0} {1}".format(args, kwargs)
            print "    return    = {0}".format(result)
            print "    time      = %.6f sec" % (te-ts)
            if (loglevel == ‘debug‘):
                print "    called_from_line : " + str(get_line_number())
            return result
        return wrapper
    return log_decorator

 但是,上面这个带log level参数的有两具不好的地方,
  1) loglevel不是debug的时候,还是要计算函数调用的时间。
  2) 不同level的要写在一起,不易读。

我们再接着改进:

mport inspect
 
def advance_logger(loglevel):
 
    def get_line_number():
        return inspect.currentframe().f_back.f_back.f_lineno
 
    def _basic_log(fn, result, *args, **kwargs):
        print "function   = " + fn.__name__,
        print "    arguments = {0} {1}".format(args, kwargs)
        print "    return    = {0}".format(result)
 
    def info_log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            result = fn(*args, **kwargs)
            _basic_log(fn, result, args, kwargs)
        return wrapper
 
    def debug_log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            ts = time.time()
            result = fn(*args, **kwargs)
            te = time.time()
            _basic_log(fn, result, args, kwargs)
            print "    time      = %.6f sec" % (te-ts)
            print "    called_from_line : " + str(get_line_number())
        return wrapper
 
    if loglevel is "debug":
        return debug_log_decorator
    else:
        return info_log_decorator

 你可以看到两点,
  1)我们分了两个log level,一个是info的,一个是debug的,然后我们在外尾根据不同的参数返回不同的decorator。
  2)我们把info和debug中的相同的代码抽到了一个叫_basic_log的函数里,DRY原则。

一个MySQL的Decorator
  下面这个decorator是我在工作中用到的代码,我简化了一下,把DB连接池的代码去掉了,这样能简单点,方便阅读。

import umysql
from functools import wraps
 
class Configuraion:
    def __init__(self, env):
        if env == "Prod":
            self.host    = "coolshell.cn"
            self.port    = 3306
            self.db      = "coolshell"
            self.user    = "coolshell"
            self.passwd  = "fuckgfw"
        elif env == "Test":
            self.host   = ‘localhost‘
            self.port   = 3300
            self.user   = ‘coolshell‘
            self.db     = ‘coolshell‘
            self.passwd = ‘fuckgfw‘
 
def mysql(sql):
 
    _conf = Configuraion(env="Prod")
 
    def on_sql_error(err):
        print err
        sys.exit(-1)
 
    def handle_sql_result(rs):
        if rs.rows > 0:
            fieldnames = [f[0] for f in rs.fields]
            return [dict(zip(fieldnames, r)) for r in rs.rows]
        else:
            return []
 
    def decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            mysqlconn = umysql.Connection()
            mysqlconn.settimeout(5)
            mysqlconn.connect(_conf.host, _conf.port, _conf.user,                               _conf.passwd, _conf.db, True, ‘utf8‘)
            try:
                rs = mysqlconn.query(sql, {})
            except umysql.Error as e:
                on_sql_error(e)
 
            data = handle_sql_result(rs)
            kwargs["data"] = data
            result = fn(*args, **kwargs)
            mysqlconn.close()
            return result
        return wrapper
 
    return decorator
 
@mysql(sql = "select * from coolshell" )
def get_coolshell(data):
    ... ...
    ... ..

 线程异步

下面量个非常简单的异步执行的decorator,注意,异步处理并不简单,下面只是一个示例。

from threading import Thread
from functools import wraps
 
def async(func):
    @wraps(func)
    def async_func(*args, **kwargs):
        func_hl = Thread(target = func, args = args, kwargs = kwargs)
        func_hl.start()
        return func_hl
 
    return async_func
 
if __name__ == ‘__main__‘:
    from time import sleep
 
    @async
    def print_somedata():
        print ‘starting print_somedata‘
        sleep(2)
        print ‘print_somedata: 2 sec passed‘
        sleep(2)
        print ‘print_somedata: 2 sec passed‘
        sleep(2)
        print ‘finished print_somedata‘
 
    def main():
        print_somedata()
        print ‘back in main‘
        print_somedata()
        print ‘back in main‘
 
    main()

 

Python Decorator

标签:ssm   详解   学习   www.   cme   html   出错   函数式   higher   

原文地址:http://www.cnblogs.com/zh605929205/p/7704902.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!