码迷,mamicode.com
首页 > 编程语言 > 详细

python 实现简单卷积网络框架

时间:2017-11-06 15:55:18      阅读:210      评论:0      收藏:0      [点我收藏+]

标签:log   die   patch   pat   str   learning   __init__   []   位置   

第一步定义卷积核类:

class Filter(object):
    # 滤波器类 对卷积核进行初始化
    def __init__(self,width,height,depth):
        # initialize the filter parameter
        self.weights=np.random.uniform(-1e-4,1e-4,(depth,height,width))
        self.bias=0
        self.weights_grad=np.zeros(self.weights.shape)
        self.bias_grad=0
    def get_weights(self):
        return self.weights
    def get_bias(self):
        return self.bias
    def update_weight(self,learning_rate):
        self.weights-=self.weights_grad*learning_rate
        self.bias-=self.bias_grad*learning_rate

  定义卷积层

def conv(input_array,kernel_array,output_array,stride,bias):
    channel_number=input_array.ndim
    output_width=output_array.shape[1]
    output_height=output_array.shape[0]
    kernel_width=kernel_array.shape[-1]
    kernel_height=kernel_array.shape[-2]
    for i in range(output_height):
        for j in range(output_width):
# get_patch 得到i,j位置对应的图像的块 output_array[i][j]=(get_patch(input_array,i,j,kernel_width,kernel_height,stride)*kernel_array).sum()+bias

  定义padding 函数:根据扩展的大小进行0填充

def padding(input_array, zero_padding):
    if zero_padding == 0:
        return input_array
    else:
        if input_array.ndim == 3:
            input_width = input_array.shape[2]
            input_height = input_array.shape[1]
            input_depth = input_array.shape[0]
            padded_array = np.zeros((input_depth, input_height + 2 * zero_padding,
                                         input_width + 2 * zero_padding))
            padded_array[:, zero_padding:zero_padding + input_height,
            zero_padding:zero_padding + input_width] = input_array

        elif input_array.ndim == 2:
            input_width = input_array.shape[1]
            input_height = input_array.shape[0]
            padded_array = np.zeros((input_height + 2 * zero_padding, input_width + 2 * zero_padding))
            padded_array[zero_padding:zero_padding + input_width,
            zero_padding:zero_padding + input_height] = input_array
        return padded_array

  定义卷积类:

    def calculate_output_size(input_size,filter_size,zero_padding,stride):
        return (input_size-filter_size+2*zero_padding)/stride+1

  

class ConvLayer(object):
    def __init__(self,input_width,input_height,channel_number,
                 filter_width,filter_height,filter_number,zero_padding,stride,
                 activator,learning_rate):
        self.input_width=input_width
        self.input_height=input_height
        self.channel_number=channel_number
        self.filter_width=filter_width
        self.filter_height=filter_height
        self.filter_number=filter_number
        self.zero_padding=zero_padding
        self.stride=stride
# 根据(f-w+2p)/2+1 self.outpu_width=ConvLayer.calculate_output_size(self.input_width, filter_width,zero_padding,stride) self.output_height=ConvLayer.calculate_output_size(self.input_height, filter_height,zero_padding, stride)
# 得到padding 后的图像 self.output_array=np.zeros(self.filter_number,self.output_width,self.output_height) # the output of the convolution
# 初始化filters
self.filters=[] # initialize filters for i in range(filter_number): self.filters.append(Filter(filter_width,filter_height,self.channel_number)) self.activator=activator self.learning_rate=learning_rate # 对 灵敏度图进行扩充 def expand_sentivity_map(self,sensitivity_array): depth=sensitivity_array.shape[0] expanded_width=(self.input_width-self.filter_width+2*self.zero_padding+1) expanded_height=(self.input_height-self.filter_height+2*self.zero_padding+1) expand_array=np.zeros((depth,expanded_height,expanded_width)) for i in range(self.output_height): for j in range(self.output_width):
i_pos=i*self.stride j_pos=j*self.stride expand_array[:,i_pos,j_pos]=sensitivity_array[:,i,j] return expand_array
# 创建灵敏度矩阵 def create_delta_array(self): return np.zeros((self.channnel_number,self.input_height,self.input_width)) # 前向传递 def forward(self,input_array): self.input_array=input_array # first pad image to the size needed self.padded_input_array=padding(input_array,self.zero_padding) for f in range(self.filter_number): filter=self.filters[f] conv(self.paded_input_array,filter.get_weights(),filter.get_bias()) element_wise_op(self.output_array,self.acitator.forward) # 反向传递
def bp_sensitivity_map(self, sensitivity_array,activator): # padding sensitivity map expanded_array=self.expand_sentivity_map(sensitivity_array) expanded_width=expanded_array.shape[2] zp=(self.input_width+self.filter_width-1-expanded_width)/2 padded_array=padding(expanded_array,zp) self.delta_array=self.create_delta_array() for f in range(self.filter_number): filter=self.filter[f] filpped_weights=np.array(map(lambda i: np.rot90(i,2),filter.get_weights())) delta_array=self.create_delta_array() for d in range(delta_array.shape[0]) conv(padded_array[f],filpped_weights[d],delta_array[d],1,0) self.delta_array+=delta_array derivative_array=np.array(self.input_array) element_wise_op(derivative_array,activator.backward) self.delta_array*=derivative_array
# 参数的梯度是 输入乘以灵敏度矩阵 def bp_gradient(self,sensitivity_array): expanded_array=self.expand_sensitivity_map(sensitivity_array) for f in range(self.filter_number): filter=self.filter[f] for d in range(filter.weights.shape[0]): conv(self.padded_input_array[d],expanded_array[f],filter.weights_grad[d],1,0) filter.bias_grad=expanded_array[f].sum()
# 对参数进行update def update(self): for filter in self.filters: filter.update(self.learning_rate)

  

python 实现简单卷积网络框架

标签:log   die   patch   pat   str   learning   __init__   []   位置   

原文地址:http://www.cnblogs.com/fanhaha/p/7793462.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!