标签:带来 point 也会 陷阱 ges 操作 malloc 赋值 释放
原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址。
对于任何使用C语言的人,如果问他们C语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具。
本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密。本文内容包括:
如果您预先知道什么地方可能出错,那么您就能够小心避免陷阱,并消除大多数与指针和内存相关的问题。
有几种问题场景可能会出现,从而可能在完成生成后导致问题。在处理指针时,您可以使用本文中的信息来避免许多问题。
常见的内存错误及其对策如下:
1、内存分配未成功,却使用了它
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数
的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。
2、内存分配虽然成功,但是尚未初始化就引用它
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。
内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零
值也不可省略,不要嫌麻烦。
3、内存分配成功并且已经初始化,但操作越过了内存的边界
例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。
4、忘记了释放内存,造成内存泄露
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。
在本例中,p
已被分配了 10 个字节。这 10 个字节可能包含垃圾数据,如图 1 所示。
char *p = malloc ( 10 );
图 1. 垃圾数据
如果在对这个 p
赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p
可能具有您的程序从未曾预料到的值。
良好的实践是始终结合使用 memset
和 malloc
,或者使用 calloc
。
char *p = malloc (10); memset(p,’\0’,10);
现在,即使同一个代码段尝试在对 p
赋值前访问它,该代码段也能正确处理 Null
值(在理想情况下应具有的值),然后将具有正确的行为。
由于 p
已被分配了 10 个字节,如果某个代码片段尝试向 p
写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针 q
表示该内存。
结果,指针 q
将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。
char *name = (char *) malloc(11); // Assign some value to name memcpy ( p,name,11); // Problem begins here
在本例中,memcpy
操作尝试将 11 个字节写到 p
,而后者仅被分配了 10 个字节。
作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy
函数将是用于此目的的检查点。
内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。
char *ptr = (char *)malloc(10); char name[20] ; memcpy ( name,ptr,20); // Problem begins here
在本例中,memcpy
操作尝试从 ptr
读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。
内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。
我将使用一个示例来说明重新赋值问题。
char *memoryArea = malloc(10); char *newArea = malloc(10);
这向如下面的图 4 所示的内存位置赋值。
memoryArea
和 newArea
分别被分配了 10 个字节,它们各自的内容如图 4 所示。如果某人执行如下所示的语句(指针重新赋值)……
memoryArea = newArea;
则它肯定会在该模块开发的后续阶段给您带来麻烦。
在上面的代码语句中,开发人员将 memoryArea
指针赋值给 newArea
指针。结果,memoryArea
以前所指向的内存位置变成了孤立的,如下面的图 5 所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。
图 5. 内存泄漏
在对指针赋值前,请确保内存位置不会变为孤立的。
假设有一个指针 memoryArea
,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置,如图 6所示。
如果通过调用 free 来释放了 memoryArea
,则 newArea
指针也会因此而变得无效。newArea
以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea
所指向的内存位置变为了孤立的,从而导致了内存泄漏。
每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为 newArea
),并从那里开始释放,然后再遍历回父节点。
这里的正确实现应该为:
free( memoryArea->newArea); free(memoryArea);
有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了 calling
函数的职责。
char *func( ) { return malloc(20); // make sure to memset this location to ‘\0’… } void callingFunc( ) { func ( ); // Problem lies here }
在上面的示例中,callingFunc()
函数中对 func()
函数的调用未处理该内存位置的返回地址。结果,func()
函数所分配的 20 个字节的块就丢失了,并导致了内存泄漏。
在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。
始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。
访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是 在访问空指针。
本文讨论了几种在使用动态内存分配时可以避免的陷阱。要避免内存相关的问题,良好的实践是:
memset
和 malloc,或始终使用 calloc
。malloc
都要有一个对应的 free。标签:带来 point 也会 陷阱 ges 操作 malloc 赋值 释放
原文地址:http://www.cnblogs.com/cyyljw/p/7807927.html