码迷,mamicode.com
首页 > 编程语言 > 详细

Java虚拟机9:垃圾收集(GC)-4(垃圾收集器)

时间:2017-11-09 22:32:48      阅读:233      评论:0      收藏:0      [点我收藏+]

标签:vivo   模式   知识   font   最好   设置   reads   为什么   对比   

1.前言

垃圾收集器是前一章垃圾收集算法理论知识的具体实现了,不同虚拟机所提供的垃圾收集器可能会有很大差别,另外我们必须提前说明一个道理:没有最好的垃圾收集器,更加没有万能的收集器,只能选择对具体应用最合适的收集器。这也是HotSpot为什么要实现这么多收集器的原因,下面我们以HotSpot为例讲解。在写之前,先介绍几个概念。

1.1.并行和并发的区别

这个区别之前在你专门的一节介绍过,这里再重点提一下:这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,可以这么理解这两个名词:

1、并行Parallel

多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

2、并发Concurrent

指用户线程与垃圾收集线程同时执行(但并不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

1.2.Minor GC和Full GC的区别

  • 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性(存活率不高),所以Minor GC非常频繁,一般回收速度也比较快。

  • 老年代GC(Major GC / Full GC):指发生在老年代的垃圾收集动作,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。 

1.3.吞吐量

吞吐量:就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间)。虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

2.垃圾收集器组合

 下面一张图是HotSpot虚拟机包含的所有收集器:

技术分享

 

(A):图中展示了7种不同分代的收集器:

       Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;

(B):而它们所处区域,则表明其是属于新生代收集器还是老年代收集器:

      新生代收集器:Serial、ParNew、Parallel Scavenge;

      老年代收集器:Serial Old、Parallel Old、CMS;

      整堆收集器:G1;

(C):两个收集器间有连线,表明它们可以搭配使用

       Serial/Serial Old、Serial/CMS、ParNew/Serial Old、ParNew/CMS、Parallel Scavenge/Serial Old、Parallel Scavenge/Parallel Old、G1;

(D):其中Serial Old作为CMS出现"Concurrent Mode Failure"失败的后备预案(后面介绍);

2.1 Serial收集器

  1. 特性:
    最基本、发展历史最久的收集器,采用复制算法的单线程收集器单线程一方面意味着它只会使用一个CPU或一条线程去完成垃圾收集工作,另一方面也意味着在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束为止,这个过程也称为 Stop The world。后者意味着,在用户不可见的情况下要把用户正常工作的线程全部停掉,这显然对很多应用是难以接受的。

  2. 应用场景:
    Serial收集器依然是虚拟机运行在Client模式下的默认新生代收集器。 在用户的桌面应用场景中,可用内存一般不大(几十M至一两百M),可以在较短时间内完成垃圾收集(几十MS至一百多MS),只要不频繁发生,这是可以接受的

  3. 优势:
    简单而高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。比如在用户的桌面应用场景中,可用内存一般不大(几十M至一两百M),可以在较短时间内完成垃圾收集(几十MS至一百多MS),只要不频繁发生,这是可以接受的。

Stop TheWorld 说明:

      GC在后台自动发起和自动完成的,在用户不可见的情况下,把用户正常的工作线程全部停掉,即GC停顿,会带给用户不良的体验;

      从JDK1.3到现在,从Serial收集器-》Parallel收集器-》CMS-》G1,用户线程停顿时间不断缩短,但仍然无法完全消除;

设置参数

      "-XX:+UseSerialGC":添加该参数来显式的使用串行垃圾收集器;

 Serial/Serial Old组合收集器运行示意图如下:

技术分享

2.2 ParNew收集器

  1. 特性:

    ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集外,其余行为和Serial收集器完全一样,包括Serial收集器可用的所有控制参数、收集算法、Stop The world、对象分配规则、回收策略等都一样。在实现上也共用了相当多的代码。

  2. 应用场景:
    ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器。很重要的原因是:除了Serial收集器之外,目前只有它能与CMS收集器配合工作(看图)。在JDK1.5时期,HotSpot推出了一款几乎可以认为具有划时代意义的垃圾收集器-----CMS收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作

  3. 优势:
    在单CPU中的环境中,不会比Serail收集器有更好的效果,因为存在线程交互开销,甚至由于线程交互的开销,该收集器在两个CPU的环境中都不能百分百保证可以超越Serial收集器。当然,随着可用CPU数量的增加,它对于GC时系统资源的有效利用还是很有好处的,它默认开启的收集线程数与CPU数量相同。

设置参数:

      "-XX:+UseConcMarkSweepGC":指定使用CMS后,会默认使用ParNew作为新生代收集器;

      "-XX:+UseParNewGC":强制指定使用ParNew;    

      "-XX:ParallelGCThreads":指定垃圾收集的线程数量,ParNew默认开启的收集线程与CPU的数量相同;

ParNew/Serial Old组合收集器运行示意图如下

技术分享

2.3 Parallel Scavenge 收集器

  1. 特性:

    Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,也是并行的多线程收集器。

  2. 对比分析:

    • Parallel Scavenge收集器 VS CMS等收集器:
      Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。
      由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。

    • Parallel Scavenge收集器 VS ParNew收集器:
      Parallel Scavenge收集器与ParNew收集器的一个重要区别是它具有自适应调节策略。

  3. 应用场景:
    Parallel Scavenge收集器是虚拟机运行在Server模式下的默认垃圾收集器。
    停顿时间短适合需要与用户交互的程序,良好的响应速度能提升用户体验;高吞吐量则可以高效率利用CPU时间,尽快完成运算任务,主要适合在后台运算而不需要太多交互的任务。
    该收集器以高吞吐量为目标,就是减少垃圾收集时间,从而让用户代码获得更长的运行时间。所以适合那些运行在多个CPU上,并且专注于后台计算的应用程序,例如:执行批量处理任务、订单处理,工资支付,科学计算等。

设置参数:

虚拟机提供了-XX:MaxGCPauseMillis和-XX:GCTimeRatio两个参数来精确控制最大垃圾收集停顿时间和吞吐量大小。不过不要以为前者越小越好,GC停顿时间的缩短是以牺牲吞吐量和新生代空间换取的。

     "-XX:+MaxGCPauseMillis":控制最大垃圾收集停顿时间,大于0的毫秒数;这个参数设置的越小,停顿时间可能会缩短,但也会导致吞吐量下降,导致垃圾收集发生得更频繁。

     "-XX:GCTimeRatio":设置垃圾收集时间占总时间的比率,0<n<100的整数,就相当于设置吞吐量的大小。

                                          垃圾收集执行时间占应用程序执行时间的比例的计算方法是:

                                         1 / (1 + n)

                                          例如,选项-XX:GCTimeRatio=19,设置了垃圾收集时间占总时间的5%--1/(1+19);

                                          默认值是1%--1/(1+99),即n=99;

                                          垃圾收集所花费的时间是年轻一代和老年代收集的总时间;

        GC自适应的调节策略

Parallel Scavenge收集器有一个参数-XX:+UseAdaptiveSizePolicy。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。如果对于垃圾收集器运作原理不太了解,以至于在优化比较困难的时候,使用Parallel收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成将是一个不错的选择

 

Java虚拟机9:垃圾收集(GC)-4(垃圾收集器)

标签:vivo   模式   知识   font   最好   设置   reads   为什么   对比   

原文地址:http://www.cnblogs.com/haitaofeiyang/p/7811311.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!