标签:有序 ++ span 条件 nlog [] display rgs recursion
1 /*通过递归实现归并排序 2 * 具有思路:将要排序的数组不断划分,直到只有一个元素的时候停止; 3 * 这是递归的基准条件,返回进行排序。 4 * 归并排序的时间复杂度:O(NlogN):考虑的是复制数据到workarr和workarr到arr的次数 5 * 6 * */ 7 public class MergeWithRecursion { 8 static int items = 6; 9 static int[] arr = {10,8,9,59,2,4}; 10 public static void main(String[] args) { 11 display(); 12 mergeSort(); 13 display(); 14 15 } 16 17 public static void mergeSort(){ 18 int[] workarr = new int[items]; 19 recMergeSort(workarr,0,items-1); 20 } 21 22 private static void recMergeSort(int[] workarr, int low, int high) { 23 if(low == high){ 24 return; 25 } 26 else{ 27 int mid = (low + high) / 2; 28 recMergeSort(workarr,low,mid); 29 recMergeSort(workarr,mid+1,high); 30 merge(workarr,low,mid+1,high); 31 } 32 33 } 34 35 private static void merge(int[] workarr, int low, int mid, int high) { 36 //workarr index 37 int j = 0; 38 int lowbound = low; 39 int midindex = mid - 1; 40 int n = high - lowbound + 1; 41 //进行归并到工作区数组 42 while(low <= midindex && mid <= high){ 43 if(arr[low] < arr[mid]){ 44 workarr[j++] = arr[low++]; 45 } 46 else{ 47 workarr[j++] = arr[mid++]; 48 } 49 } 50 51 while(low <= midindex){ 52 workarr[j++] = arr[low++]; 53 } 54 55 while(mid <= high){ 56 workarr[j++] = arr[mid++]; 57 } 58 59 //将工作区部分有序的数组复制到原来的数组 60 for(int i = 0; i < n;i++){ 61 arr[lowbound + i] = workarr[i]; 62 } 63 } 64 65 public static void display(){ 66 for(int i = 0; i < arr.length;i++){ 67 System.out.print(arr[i] + " "); 68 } 69 System.out.println(); 70 } 71 72 }
标签:有序 ++ span 条件 nlog [] display rgs recursion
原文地址:http://www.cnblogs.com/sun1993/p/7820073.html