标签:特定 项目 包括 反向 事务性 观察 队列 推送 多个
MQ 异步消息队列是微信后台自研的重要组件,广泛应用在各种业务场景中,为业务提供解耦、缓冲、异步化等能力。本文分享了该组件2.0版本的功能特点及优化实践,希望能为类似业务(比如移动端IM系统等)的消息队列设计提供一定的参考。
廖文鑫,2013年加入腾讯,从事微信后台基础功能及架构的开发和运营,先后参与了消息通知推送系统、任务队列组件、春晚摇红包活动等项目,在海量分布式高性能系统方面有丰富的经验。
微信后台给件 MQ 1.0 发布之初,基本满足了一般业务场景的异步化需求,实现了单机下高性能的任务持久化和消费调度。
MQ 1.0 的基本框架如下图所示:
可以看到,其主要分为 MQ 和 Worker 两部分。MQ 是任务的持久化和调度框架,Worker 是任务的处理框架。
该组件与常见的队列相比,有几个特点:
随着业务发展,面对日益复杂的业务场景,1.0 版本逐渐显得力不从心。因此,在 1.0 的基础上,我们实现了 MQ 2.0 版本,主要优化点包括以下几方面:
下面对各个优化点详细讲解。
iOS消息通知功能,是MQ组件的一个典型应用场景。微信的后台具有多IDC分布的特点,不同IDC与苹果推送服务(APNs)之间的网络质量参差不齐,部分链路故障频发。
由于MQ 1.0 的任务只能本机消费,网络质量的下降将直接导致 Worker 消费能力的下降,进而产生积压,最终使消息服务质量受损。
为此,我们提出了跨机消费模式。其目标是实现一个去中心化、自适应的弹性消费网络,以解决系统中出现的局部积压问题。
消费模式从单机扩展到多机后,我们要面临的核心问题是,哪些任务给哪个 Worker 去处理。其实,考虑多机房、多IDC、带宽成本、任务延时等因素,我们很容易得到一个直观而朴素的思想:任务优先在本机消费,产生积压时才发生跨机消费。
如何实现我们想要的跨机消费呢?经过思考,我们将问题分解为三个子问题:
下面逐一进行讨论。
MQ 1.0 下,MQ 可以准确观察到本机 Worker 的负载状态,并由其将任务推送给空闲的 Worker 进行处理。推送的方式可以将任务的处理延时做到极低。
扩展到跨机消费后,Worker 可以消费任意 MQ 的任务。对 MQ 而言,已经难以精确地维护全网每个 Worker 的状态了。若继续沿用推任务的方式,很可能会出现 Worker 接收到超过其处理能力的任务量,从而产生积压。
若使用 Worker 拉取任务的方式,则拉取的速度可以根据 Worker 自身的消费能力调整,但在任务延时上,需要有所牺牲。
推任务:优点,低延时;缺点,任务在 Worker 端积压,无法被重新调度;
拉任务:优点,任务在 MQ 端积压,可以被空闲的 Worker 拉走;缺点,延时稍高。
经过简单的权衡,我们选用了拉任务的方式,毕竟,我们难以接受任务积压在 Worker 侧的情况。
前面提到,系统应该在任务出现积压时,才产生跨机消费。因此,MQ 在产生积压时,应该要能以某种形式通知 Worker。
同时,积压量的变化是很快的,通知的方式应该做到以下几方面的高效:
为此,我们实现了广播模式,将 MQ 产生的积压量信息作为一个消息,广播给 多个Worker。
它在实现上如何满足高效的积压通知要求呢?
通过广播模式,我们高效地解决了 MQ 积压的感知问题。
通过广播模式,每个Worker 都可以观察到所有它感兴趣的 MQ 的积压情况,并以此构建出整个系统的积压分布统计。拿到这些信息后,Worker 如何决定拉取哪个 MQ 的任务呢?
还是回到我们的原始诉求,尽量做到本机消费。所以我们的策略是说,Worker 应该优先消除本机的积压,当它有余力的时候,才去帮助其它Worker。
通过分优先级地拉取,既可在队列系统正常时大量降低跨机消费,同时也可以在故障发生时,有效地消除局部积压。
跨机消费模式,从整个系统角度来看,是完全去中心化的,任意一个 MQ 和 Worker 个体都可以独立、自由地加入或退出系统。
在这个竞争式的消费系统里,根据具体的部署情况、不同机型消费能力不同等因素,无法达到完全的负载均衡状态。但在系统产生局部过载时,则可以自适应调节,达到相对的均衡。
从实际应用效果来看,MQ 2.0实现了通知推送服务的IDC级别容灾,即使只剩下一个IDC可用,也可以做到推送质量纹丝不动。
MQ 2.0 对跨机消费模式的支持,为业务提供了一种新的队列容灾模式:
微信发布已有6年多的时间,后台的业务逻辑演化至今,往往是非常的复杂,我们来看一个比较极端的例子 —— 群聊批量并行化投递。
上图是群消息投递业务的简化流程示意。随着微信群消息体量的高速膨胀,其带来的成本压力越来越大,业务同学提出了批量并行化的优化方式。简单来说,就是将每个步骤中产生的 RPC 访问按实际访问机器聚合成一系列的批量操作,然后并行化执行。
通常来说,单次的批量并行化并不难写,一般而言,业务同学可能会选择裸写。但如果涉及多次的批量并行化,其中还存在嵌套的话,事情就不那么简单了。最终代码将变得异常复杂,业务开发的同学苦不堪言。MQ 能否从框架上解决这类问题?
其实,深入分析群消息投递的优化需求,可以看到:
所以,为了从根本上解决这一类问题,MQ 为业务提供了类 MapReduce 任务处理框架。
该框架提供封装了通用的 MapReduce 过程,以及并发的调度过程,同时提供并发池隔离能力,解决了并发池饿死的问题。让业务同学可以从冗繁的代码中解放出来,将更多的精力投入到实际业务中。
除了批量并行化的需求,业务经常提到的一个需求是,任务处理时会产生一些新的任务需要加到队列中。一般来说是走一次 RPC 来执行任务入队。在 MQ 2.0 下,流式任务可以帮忙完成这个事情。
所谓流式任务,就是在任务处理结束时,除了返回任务结果,还可以返回一系列新的任务。这些任务通过 MQ 内部框架流转入队,更轻量,事务性更强。
MQ 2.0 提供的类 MapReduce任务处理框架和流式任务处理框架,为业务的实现提供了便利的支持。
MQ的重要作用是充当系统中的缓冲节点,流量控制的能力是非常关键的。在 MQ 1.0 下,只能通过配置队列的任务出队速度来实现流量控制。
其问题有几个:
从需求来看,MQ 的过载保护需求有两个方面,一是保护自己不过载,二是保护后端不过载。
导致过载的因素很多,从 MQ 的角度来看,这些因素可以分为两大类。一种是它能直接观察的因素,如自身的 CPU 使用率,内存使用率,任务执行的成功率;另一种是无法直接观察的因素,如业务实际对后端产生的调用量。
从这两类因素出发,我们将过载保护的策略分为两大策略:
下面分别讨论两种策略。
基于 CPU 使用率的流控:
该限速策略很好理解,就是在 CPU 使用率过高时,降低任务处理速度,以将 CPU 资源优先用于保证队列的缓存
基于任务成功率的流控:
后端模块故障时,往往会导致队列任务出现大量的失败和重试,这些重试的量级往往会远超该后端模块设计的有效输出,给故障恢复带来很大的困难。该流控策略的通过收集任务执行的成功率信息,评估后端的有效输出,并通过反馈计算限制任务重试的速度。
MQ 实现了通用的后向限速能力,业务通过特定接口往 MQ 回传控制量,达到速度调控的目的。
基于后端 RPC 访问量的流控:
我们经常会遇到一些业务在处理任务时,存在不同程度的对后端的扩散访问。仅对任务处理速度进行限制,无法准确限制对后端产生的实际调用量。该策略通过收集业务对后端产生的实际调用量,反向调节任务处理的速度。
MQ 2.0 通过分析流控需求,在前向和后向分别提供了有效的流控手段,并且为后续更精细的流控策略预留了拓展的能力,增强了过载保护的能力。
十分感谢微信团队的编写,本文仅为转载,留个记录。原文地址:微信后台团队:微信后台异步消息队列的优化升级实践分享
标签:特定 项目 包括 反向 事务性 观察 队列 推送 多个
原文地址:http://www.cnblogs.com/hanybblog/p/7827001.html