template <class T>
class smartpointer
{
private:
T *_ptr;
public:
smartpointer(T *p) : _ptr(p) //构造函数
{
}
T& operator *() //重载*操作符
{
return *_ptr;
}
T* operator ->() //重载->操作符
{
return _ptr;
}
~smartpointer() //析构函数
{
delete _ptr;
}
};实现引用计数有两种经典策略,在这里将使用其中一种,这里所用的方法中,需要定义一个单独的具体类用以封装引用计数和相关指针:// 定义仅由HasPtr类使用的U_Ptr类,用于封装使用计数和相关指针
// 这个类的所有成员都是private,我们不希望普通用户使用U_Ptr类,所以它没有任何public成员
// 将HasPtr类设置为友元,使其成员可以访问U_Ptr的成员
class U_Ptr
{
friend class HasPtr;
int *ip;
size_t use;
U_Ptr(int *p) : ip(p) , use(1)
{
cout << "U_ptr constructor called !" << endl;
}
~U_Ptr()
{
delete ip;
cout << "U_ptr distructor called !" << endl;
}
}; HasPtr类需要一个析构函数来删除指针。但是,析构函数不能无条件的删除指针。”
#include<iostream>
using namespace std;
// 定义仅由HasPtr类使用的U_Ptr类,用于封装使用计数和相关指针
// 这个类的所有成员都是private,我们不希望普通用户使用U_Ptr类,所以它没有任何public成员
// 将HasPtr类设置为友元,使其成员可以访问U_Ptr的成员
class U_Ptr
{
friend class HasPtr;
int *ip;
size_t use;
U_Ptr(int *p) : ip(p) , use(1)
{
cout << "U_ptr constructor called !" << endl;
}
~U_Ptr()
{
delete ip;
cout << "U_ptr distructor called !" << endl;
}
};
class HasPtr
{
public:
// 构造函数:p是指向已经动态创建的int对象指针
HasPtr(int *p, int i) : ptr(new U_Ptr(p)) , val(i)
{
cout << "HasPtr constructor called ! " << "use = " << ptr->use << endl;
}
// 复制构造函数:复制成员并将使用计数加1
HasPtr(const HasPtr& orig) : ptr(orig.ptr) , val(orig.val)
{
++ptr->use;
cout << "HasPtr copy constructor called ! " << "use = " << ptr->use << endl;
}
// 赋值操作符
HasPtr& operator=(const HasPtr&);
// 析构函数:如果计数为0,则删除U_Ptr对象
~HasPtr()
{
cout << "HasPtr distructor called ! " << "use = " << ptr->use << endl;
if (--ptr->use == 0)
delete ptr;
}
// 获取数据成员
int *get_ptr() const
{
return ptr->ip;
}
int get_int() const
{
return val;
}
// 修改数据成员
void set_ptr(int *p) const
{
ptr->ip = p;
}
void set_int(int i)
{
val = i;
}
// 返回或修改基础int对象
int get_ptr_val() const
{
return *ptr->ip;
}
void set_ptr_val(int i)
{
*ptr->ip = i;
}
private:
U_Ptr *ptr; //指向使用计数类U_Ptr
int val;
};
HasPtr& HasPtr::operator = (const HasPtr &rhs) //注意,这里赋值操作符在减少做操作数的使用计数之前使rhs的使用技术加1,从而防止自我赋值
{
// 增加右操作数中的使用计数
++rhs.ptr->use;
// 将左操作数对象的使用计数减1,若该对象的使用计数减至0,则删除该对象
if (--ptr->use == 0)
delete ptr;
ptr = rhs.ptr; // 复制U_Ptr指针
val = rhs.val; // 复制int成员
return *this;
}
int main(void)
{
int *pi = new int(42);
HasPtr *hpa = new HasPtr(pi, 100); // 构造函数
HasPtr *hpb = new HasPtr(*hpa); // 拷贝构造函数
HasPtr *hpc = new HasPtr(*hpb); // 拷贝构造函数
HasPtr hpd = *hpa; // 拷贝构造函数
cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
hpc->set_ptr_val(10000);
cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
hpd.set_ptr_val(10);
cout << hpa->get_ptr_val() << " " << hpb->get_ptr_val() << endl;
delete hpa;
delete hpb;
delete hpc;
cout << hpd.get_ptr_val() << endl;
return 0;
}
这里的赋值操作符比较麻烦,且让我用图表分析一番:
HasPtr& operator=(const HasPtr&); // 赋值操作符此时,rhs就是p1,首先将p1指向的ptr的use加1,
++rhs.ptr->use; // 增加右操作数中的使用计数然后,做:
if (--ptr->use == 0) delete ptr;因为,原先p2指向的对象现在p2不在指向,那么该对象就少了一个指针去指,所以,use做自减1;
ptr = rhs.ptr; // 复制U_Ptr指针 val = rhs.val; // 复制int成员 return *this;做完赋值操作后,那么就成为如下图所示了。红色标注的就是变化的部分:


if(this == &rhs) return *this;运行结果如下图:

原文地址:http://blog.csdn.net/yc7369/article/details/39294815