码迷,mamicode.com
首页 > 编程语言 > 详细

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

时间:2017-12-10 23:07:07      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:生成   image   eth   training   分享图片   目标   fast   攻击   开始   

(没太听明白,以后再听)

1. 如何欺骗神经网络?

  这部分研究最开始是想探究神经网络到底是如何工作的。结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案。比如下图,左边的熊猫被识别成熊猫,但是加上中间的小“噪音”一样的数值,右图的熊猫就识别不出来了。而且这个小“噪音”不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络。

技术分享图片

 

2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化、训练。但是从输入到输出的映射可以看成线性的,是可以预测的,优化出输入要比优化出权重容易得多。可以利用输入到输出的线性关系,很方便地生成可以欺骗(或者叫攻击)神经网络的样例。

  FGSM (Fast Gradient Step Method):一种对抗方法。这个方法的核心思想是在每一步优化的过程中加入少量噪声,让预测结果朝目标类别偏移,或者如你所愿远离正确的类别。

  Transferability Attack:在自己的网络上找到攻击样例,这个样例往往也能攻破其他神经网络。

 

3. 对抗样例可以用来训练网络得到更好的效果。

 

4. 总结

技术分享图片

 

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

标签:生成   image   eth   training   分享图片   目标   fast   攻击   开始   

原文地址:http://www.cnblogs.com/zonghaochen/p/8018336.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!