"""
题目:判断101-200之间有多少个素数,并输出所有素数。
质数(prime number)又称素数,有无限个。
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
"""
import math
def answer1():
"""
根据素数定义,一个一个判断
:return:
"""
print("输出一", end=":")
sumCount = 0
findTimes = 0
for i in range(101, 2000):
for j in range(2, i):
findTimes += 1
if i % j == 0:
break
else:
print(i, end=",")
sumCount += 1
print("共%d个" % sumCount, end=",")
print("共比较了%d次" % findTimes)
answer1()
def answer2():
"""
上述判断方法,明显存在效率极低的问题。对于每个数n,其实并不需要从2判断到n-1,我们知道,一个数若可以进行因数分解,
那么分解时得到的两个数一定是一个小于等于sqrt(n),一个大于等于sqrt(n),据此,上述代码中并不需要遍历到n-1,遍历到sqrt(n)即可,
因为若sqrt(n)左侧找不到约数,那么右侧也一定找不到约数。
:return:
"""
print("输出二", end=":")
sumCount = 0
findTimes = 0
for i in range(101, 2000):
sqrtNum = int(math.sqrt(i))
for j in range(2, sqrtNum + 1):
findTimes += 1
if i % j == 0:
break
else:
print(i, end=",")
sumCount += 1
print("共%d个" % sumCount, end=",")
print("共比较了%d次" % findTimes)
answer2()
def answer3():
"""
方法(2)应该是最常见的判断算法了,时间复杂度O(sqrt(n)),速度上比方法(1)的O(n)快得多。最近在网上偶然看到另一种更高效的方法,暂且称为方法(3)吧,
由于找不到原始的出处,这里就不贴出链接了,如果有原创者看到,烦请联系我,必定补上版权引用。下面讲一下这种更快速的判断方法;
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;
证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,
显然,素数要出现只可能出现在6x的相邻两侧。这里有个题外话,关于孪生素数,有兴趣的道友可以再另行了解一下,由于与我们主题无关,暂且跳过。
这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数。
根据以上规律,判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度,代码如下:
高手无处不在啊
由上可得,只要从96开始,每6个计算一次
:return:
"""
print("输出三", end=":")
sumCount = 0
findTimes = 0
for i in range(102, 2000, 6):
for num in (i - 1, i + 1):
sqrtNum = int(math.sqrt(num))
for j in range(2, sqrtNum + 1):
findTimes += 1
if num % j == 0:
break
else:
print(num, end=",")
sumCount += 1
print("共%d个" % sumCount, end=",")
print("共比较了%d次" % findTimes)
answer3()
def answer4():
"""
上面的方法,高手还可以改进
因为上述可得,6x-1和6x+1坑定不会被6x,6x+2,6x+3,6x+4整除,弱它是素数,那么它也是被6x-1或6x+1整除
所以上面方法,里面的判断也可以跨6来判断
:return:
"""
print("输出四", end=":")
sumCount = 0
findTimes = 0
for i in range(102, 2000, 6):
for num in (i - 1, i + 1):
sqrtNum = int(math.sqrt(num))
for j in range(5, sqrtNum + 1, 6):
findTimes += 1
if num % j == 0 or num % (j + 2) == 0:
break
else:
print(num, end=",")
sumCount += 1
print("共%d个" % sumCount, end=",")
print("共比较了%d次" % findTimes)
answer4()
def answer5():
"""
排除偶数,数组统计
:return:
"""
print("输出五", end=":")
findTimes = 0
numList = []
for i in range(101, 2000, 2):
numList.append(str(i))
sqrtNum = int(math.sqrt(i))
for j in range(2, sqrtNum + 1):
findTimes += 1
if i % j == 0:
numList.pop()
break
print(",".join(numList), end=",")
print("共%d个" % len(numList), end=",")
print("共比较了%d次" % findTimes)
answer5()
class answer6:
"""
练习迭代器
"""
def __init__(self):
"""
构造函数
"""
self.sumCount = 0
self.findTimes = 0
self.startNum = 102
self.endNum = 2000
print("输出六", end=":")
def __iter__(self):
"""
迭代器
:return:
"""
return self
def __next__(self):
"""
迭代器next
:return:
"""
if self.startNum > self.endNum:
raise StopIteration
for num in (self.startNum - 1, self.startNum + 1):
sqrtNum = int(math.sqrt(num))
for i in range(5, sqrtNum + 1, 6):
self.findTimes += 1
if num % i == 0 or num % (i + 2) == 0:
break
else:
print(num, end=",")
self.sumCount += 1
self.startNum += 6
answer = answer6()
for i in answer:
pass
print("共%d个" % answer.sumCount, end=",")
print("共比较了%d次" % answer.findTimes)
def answer7():
"""
练习yield生成器,注意和answer6区域
"""
print("输出七", end=":")
startNum = 102
sumCount = 0
findTimes = 0
while startNum < 2000:
for num in (startNum - 1, startNum + 1):
sqrtNum = int(math.sqrt(num))
for i in range(5, sqrtNum + 1, 6):
findTimes += 1
if num % i == 0 or num % (i + 2) == 0:
break
else:
sumCount += 1
print(num, end=",")
yield num
startNum += 6
print("共%d个" % sumCount, end=",")
print("共比较了%d次" % findTimes)
for i in answer7():
pass
def answer8():
"""
练习数组生成器表达式
参考:http://blog.csdn.net/u014745194/article/details/70176117
:return:
"""
print("输出八", end=":")
numList = list(filter(lambda x: x not in set([i for i in range(101, 200) for j in range(2, i - 1) if not i % j]),
range(101, 200)))
print(numList, end=",")
print("共%d个" % len(numList))
answer8()