码迷,mamicode.com
首页 > Web开发 > 详细

YOLO配置使用darknet

时间:2017-12-20 03:59:32      阅读:781      评论:0      收藏:0      [点我收藏+]

标签:scale   for   second   org   rom   output   inpu   编译   pre   

1.直接设置使用,编译通过

git clone https://github.com/pjreddie/darknet.git
cd darknet
make

2. 下载权重测试

    wget http://pjreddie.com/media/files/yolo.weights  
    ./darknet yolo test cfg/yolo.cfg yolo.weights data/dog.jpg  

3.测试结果:

dsp@dsp:/media/dsp/学习/yolo_darknet/darknet$ ./darknet yolo test cfg/yolo.cfg yolo.weights data/dog.jpg 
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32
    1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
    2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64
    3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
    4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64
    6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
    8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
    9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128
   10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
   11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
   12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
   18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   25 route  16
   26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64
   27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
   28 route  27 24
   29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024
   30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425
   31 detection
mask_scale: Using default 1.000000
Loading weights from yolo.weights...Done!
data/dog.jpg: Predicted in 9.566333 seconds.
Not compiled with OpenCV, saving to predictions.png instead

- 区分上下连个命令:

 ./darknet yolo test cfg/yolo.cfg yolo.weights data/dog.jpg  
./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg

-/darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg 结果:

技术分享图片

4.设置GPU和opencv

GPU=1
OPENCV=1

-编译错误

/usr/bin/ld: cannot find -lippicv
collect2: error: ld returned 1 exit status
Makefile:76: recipe for target darknet failed
make: *** [darknet] Error 1
/usr/bin/ld: cannot find -make: *** Waiting for unfinished jobs....
lippicv
collect2: error: ld returned 1 exit status
Makefile:82: recipe for target libdarknet.so failed
make: *** [libdarknet.so] Error 1

 

YOLO配置使用darknet

标签:scale   for   second   org   rom   output   inpu   编译   pre   

原文地址:http://www.cnblogs.com/ranjiewen/p/8067719.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!