1. 常量和变量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 高3位为线程池的运行状态,低29位为当前线程总数 private static final int COUNT_BITS = Integer.SIZE - 3; // 32 -3 = 29 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 线程池容量:2^29 - 1(0001,1111,1111,1111,1111,1111,1111,1111) private static final int RUNNING = -1 << COUNT_BITS; // 1110,0000,0000,0000,0000,0000,0000,0000 private static final int SHUTDOWN = 0 << COUNT_BITS; // 0000,0000,0000,0000,0000,0000,0000,0000 private static final int STOP = 1 << COUNT_BITS; // 0010,0000,0000,0000,0000,0000,0000,0000 private static final int TIDYING = 2 << COUNT_BITS; // 0100,0000,0000,0000,0000,0000,0000,0000 private static final int TERMINATED = 3 << COUNT_BITS; // 0110,0000,0000,0000,0000,0000,0000,0000 // RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED // 1. 调用shutdown方法:RUNNING -> SHUTDOWN -> 中断workers中所有空闲的工作线程(getTask中) // 立刻调用tryTerminate方法:SHUTDOWN -> TIDYING -> TERMINATED,若workQueue不为空,则线程池运行状态保持为SHUTDOWN // 执行完workQueue中最后一个工作任务的工作线程在processWorkerExit中将调用tryTerminate方法:SHUTDOWN -> TIDYING -> TERMINATED // 2. 调用shutdownNow方法:RUNNING || SHUTDOWN -> STOP -> 中断workers中所有已经启动的工作线程,获取和清空workQueue中所有尚未执行的工作任务 // 立刻调用tryTerminate方法:STOP -> TIDYING -> TERMINATED private static int ctlOf(int rs, int wc) { return rs | wc; } private static int runStateOf(int c) { return c & ~CAPACITY; } // 取线程池的运行状态(ctl高3位) private static int workerCountOf(int c) { return c & CAPACITY; } // 取当前线程总数(ctl低29位) private static boolean isRunning(int c) { return c < SHUTDOWN; } private static boolean runStateLessThan(int c, int s) { return c < s; } private static boolean runStateAtLeast(int c, int s) { return c >= s; } private boolean compareAndIncrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect + 1); } private boolean compareAndDecrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect - 1); } private void decrementWorkerCount() { do {} while (! compareAndDecrementWorkerCount(ctl.get())); } private final ReentrantLock mainLock = new ReentrantLock(); // workers锁 private final Condition termination = mainLock.newCondition(); // 等待线程池的运行状态成为TERMINATED(见awaitTermination方法) private final HashSet<Worker> workers = new HashSet<Worker>(); // 工作线程集合 private final BlockingQueue<Runnable> workQueue; // 工作任务队列 private volatile int corePoolSize; // 最大核心线程数 private volatile int maximumPoolSize; // 最大线程数 private volatile long keepAliveTime; // 空闲核心线程的存活时间 private volatile ThreadFactory threadFactory; // 线程工厂 private volatile RejectedExecutionHandler handler; // 默认为defaultHandler private volatile boolean allowCoreThreadTimeOut; // 允许空闲核心线程超时退出 private int largestPoolSize; // 线程总数的最大值 private long completedTaskCount; // 线程池执行的工作任务总数 private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); // 抛异常 private static final RuntimePermission shutdownPerm = new RuntimePermission("modifyThread");
2. 父类AbstractExecutorService
不详细讲AbstractExecutorService,将会涉及到FutrueTask类,有空大家可以研究下。
public abstract class AbstractExecutorService implements ExecutorService { protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { return new FutureTask<T>(runnable, value); } protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); } public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); // FutureTask execute(ftask); return ftask; } public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); // FutureTask execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); // FutureTask execute(ftask); return ftask; } ... ... }
3. execute
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { // 当前线程总数 < 核心线程数 if (addWorker(command, true)) // 创建核心工作线程 return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { // 线程池正在运行 -> 在workQueue中添加工作任务 // 在workQueue中添加工作任务后需要确保两件事情 // 1. 线程池正在运行 // 2. 在允许空闲核心线程超时退出的情况下:当前线程总数 > 0 int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) // 线程池正在关闭 -> 在workQueue中移除工作任务 // 线程池成功关闭 reject(command); else if (workerCountOf(recheck) == 0) // 当前线程总数为0:corePoolSize == 0 || 所有核心工作线程超时(见getTask) addWorker(null, false); // 创建非核心工作线程(未绑定工作任务:将在workQueue中取工作任务执行) } else if (!addWorker(command, false)) // 线程池正在关闭 || 未能在workQueue添加工作任务:创建非核心工作线程 reject(command); } private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { // 线程池运行状态发生变化将回到此处 int c = ctl.get(); /*记录ctl*/ int rs = runStateOf(c); // 线程池正在关闭 && (线程池运行状态 > SHUTDOWN || 工作任务不为空 || 工作任务队列为空) // 线程池运行状态 > SHUTDOWN:STOP,不添加新的工作线程 // SHUTDOWN && 工作任务不为空:不执行新的工作任务,不添加新的工作线程 // SHUTDOWN && 工作任务队列为空:workQueue不存在待执行的工作任务,不添加新的工作线程 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { // CAS(ctl)失败 && 线程池运行状态未发生变化:回到此处 int wc = workerCountOf(c); // 当前线程总数 >= 线程池容量 || 当前线程数 > 核心线程数(最大线程数) if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) /*CAS设置ctl++*/ break retry; c = ctl.get(); if (runStateOf(c) != rs) // 线程池运行状态发生变化 continue retry; } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { int rs = runStateOf(ctl.get()); // 线程池正在运行 || (线程池运行状态为SHUTDOWN && 工作任务为空 ) if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) throw new IllegalThreadStateException(); workers.add(w); // 添加工作线程到workers int s = workers.size(); if (s > largestPoolSize) // 跟踪和记录线程总数的最大值 largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); // 释放workers锁 } if (workerAdded) { t.start(); // 启动工作线程 workerStarted = true; // 工作线程已启动 } } } finally { if (! workerStarted) // 工作线程未启动 addWorkerFailed(w); } return workerStarted; } private void addWorkerFailed(Worker w) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { if (w != null) workers.remove(w); // 在workers中移除工作线程 decrementWorkerCount(); // 当前工作线程总数-- tryTerminate(); // 尝试终止线程池(w可能为shutdown后最后一个退出的工作线程,当前线程必须负责终止线程池) } finally { mainLock.unlock(); // 释放workers锁 } } public boolean remove(Runnable task) { boolean removed = workQueue.remove(task); // 在workQueue中移除工作任务 tryTerminate(); // 尝试终止线程池(task可能为shutdown后workQueue中的最后一个工作任务,当前线程必须负责终止线程池) return removed; } final void reject(Runnable command) { handler.rejectedExecution(command, this); // 默认抛异常 }
4. ThreadPoolExecutor.Worker
不详细讲AbstractSynchronizer,有空大家可以研究下RenentranLock。
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { final Thread thread; // 实际线程 Runnable firstTask; // 首个工作任务 volatile long completedTasks; // 执行的工作任务总数 Worker(Runnable firstTask) { setState(-1); // state = -1 :加锁(未启动,不被中断) this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } public void run() { runWorker(this); // 执行工作任务 } void interruptIfStarted() { // 中断已启动的工作线程 Thread t; if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } // 释放锁:state++(已启动,可被中断) ... ... }
5. runWorker
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // Worker.state++(已启动,允许中断) boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { // 执行绑定的工作任务 || 执行workQueue中的工作任务 w.lock(); // 工作线程加锁 // 线程池运行状态 >= STOP || (getTask时被中断(清除中断位) && 线程池运行状态 >= STOP && 工作线程未再次被中断) if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); // 中断工作线程 try { beforeExecute(wt, task); // noop Throwable thrown = null; try { task.run(); // 执行工作任务 } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); // noop } } finally { task = null; w.completedTasks++; // 跟踪和记录w执行的工作任务总数 w.unlock(); // 工作线程释放锁 } } completedAbruptly = false; // 工作任务执行过程中未产生异常 } finally { // 1. while正常退出(getTask == null):completedAbruptly为false // 2. while非正常退出(工作任务执行过程中产生异常,如被中断):completedAbruptly为true processWorkerExit(w, completedAbruptly); } } private Runnable getTask() { boolean timedOut = false; for (;;) { // CAS(ctl)失败 || keepAliveTime内未取到工作任务 || 取工作任务时被中断:回到此处 int c = ctl.get(); /*记录ctl*/ int rs = runStateOf(c); // 线程池运行状态 >= SHUTDOWN && (线程池运行状态 >= STOP || workQueue为空) if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); // 当前线程工作总数-- return null; } int wc = workerCountOf(c); boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 核心线程允许超时 || 当前线程总数 > 最大核心线程数 if ((wc > maximumPoolSize || // 当前线程总数 > 最大线程数 (timed && timedOut)) && // (核心线程允许超时 && 线程已超时) || 当前线程总数 > 最大核心线程数 (wc > 1 || workQueue.isEmpty())) { // 当前线程总数 > 1 || workQueue为空 if (compareAndDecrementWorkerCount(c)) /*CAS设置ctl--*/ return null; continue; } try { // 取工作任务(keepAliveTime内 || 永久等待) Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; // 超时:keepAliveTime内未取到工作任务 } catch (InterruptedException retry) { // 取工作任务时被中断 timedOut = false; // 取工作任务时未超时 } } } protected void beforeExecute(Thread t, Runnable r) { } protected void afterExecute(Runnable r, Throwable t) { } private void processWorkerExit(Worker w, boolean completedAbruptly) { if (completedAbruptly) // 工作任务执行过程中产生异常,如被中断 decrementWorkerCount(); // CAS设置ctl--(区别compareAndDecrementWorkerCount) final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { completedTaskCount += w.completedTasks; // 跟踪和记录线程池执行的工作任务总数 workers.remove(w); // 在workers中移除当前工作线程 } finally { mainLock.unlock(); // 释放workers锁 } tryTerminate(); // 尝试终止线程池(可能是shutdown后最后一个即将退出的工作线程) int c = ctl.get(); if (runStateLessThan(c, STOP)) { // 线程池运行状态 < STOP if (!completedAbruptly) { // 工作任务执行过程中未产生异常 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; if (min == 0 && ! workQueue.isEmpty()) // 最后一个超时退出的工作线程 && workQueue不为空 min = 1; if (workerCountOf(c) >= min) // 当前线程总数 >= min return; } addWorker(null, false); // 补充一个工作线程 } }
6. shutdown和shutdownNow
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { checkShutdownAccess(); advanceRunState(SHUTDOWN); // 若当前线程运行状态 < SHUTDOWN,则当前运行状态置为SHUTDOWN interruptIdleWorkers(); // 中断所有空闲的工作线程 onShutdown(); // noop } finally { mainLock.unlock(); // 释放workers锁 } tryTerminate(); // 尝试终止线程池 } private void advanceRunState(int targetState) { for (;;) { int c = ctl.get(); /*记录ctl*/ if (runStateAtLeast(c, targetState) || // 当前线程运行状态 >= targetState ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) /*CAS设置ctl = targetState*/ break; } } private void interruptIdleWorkers() { interruptIdleWorkers(false); // 中断所有空闲的工作线程 } private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { for (Worker w : workers) { Thread t = w.thread; if (!t.isInterrupted() && w.tryLock()) { // 工作线程未被中断 && 工作线程尝试加锁(正在执行的工作线程已加锁,见runWorker方法) try { t.interrupt(); // 中断工作线程 } catch (SecurityException ignore) { } finally { w.unlock(); // 工作线程释放锁 } } if (onlyOne) // 是否只中断一个? break; } } finally { mainLock.unlock(); // 释放workers锁 } } void onShutdown() { } private static final boolean ONLY_ONE = true; final void tryTerminate() { for (;;) { // CAS(ctl)失败将回到此处 int c = ctl.get(); /*记录ctl*/ // 线程池正在运行 || 线程池运行状态 >= TIDYING || (线程运行状态为SHUTDOWN && workQueue不为空) // 线程池正在运行:当前线程不终止线程池 // 线程池运行状态 >= TIDYING:线程池即将终止,当前线程不终止线程池 // 线程运行状态为SHUTDOWN && workQueue不为空:正在等待workQueue为空,当前线程不终止线程池 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; if (workerCountOf(c) != 0) { // 中断一个空闲的工作线程:可能之前未被shutdown方法中断的工作线程已执行完毕,最后阻塞在workQueue上 interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { /*CAS设置ctl = TIDYING*/ try { terminated(); // noop } finally { ctl.set(ctlOf(TERMINATED, 0)); // ctl = TERMINATED termination.signalAll(); // 唤醒所有等待线程池结束的线程 } return; } } finally { mainLock.unlock(); // 释放workers锁 } } } protected void terminated() { } // 可以在调用shutdown方法后调用awaitTermination方法等待线程池的运行状态成为TERMINATED,即等待最后一个执行线程退出 public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (;;) { if (runStateAtLeast(ctl.get(), TERMINATED)) return true; if (nanos <= 0) return false; nanos = termination.awaitNanos(nanos); } } finally { mainLock.unlock(); } }
public List<Runnable> shutdownNow() { // 中断所有正在执行的工作线程,清空workers中空闲的工作线程 List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { checkShutdownAccess(); advanceRunState(STOP); // 若当前线程运行状态 < STOP,则当前运行状态置为STOP interruptWorkers(); // 中断所有已经启动的工作线程 tasks = drainQueue(); // 获取和清空workQueue中所有尚未执行的工作任务 } finally { mainLock.unlock(); // 释放锁 } tryTerminate(); // 尝试终止线程池 return tasks; // return 所有尚未执行的工作任务 } private void interruptWorkers() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); // 加workers锁 try { for (Worker w : workers) w.interruptIfStarted(); // w已经启动则中断t } finally { mainLock.unlock(); // 加wrokers锁 } } private List<Runnable> drainQueue() { // 获取和清空workQueue中所有尚未执行的工作任务 BlockingQueue<Runnable> q = workQueue; ArrayList<Runnable> taskList = new ArrayList<Runnable>(); q.drainTo(taskList); if (!q.isEmpty()) { for (Runnable r : q.toArray(new Runnable[0])) { if (q.remove(r)) taskList.add(r); } } return taskList; }