码迷,mamicode.com
首页 > Web开发 > 详细

2.3AutoEncoder

时间:2017-12-27 18:15:14      阅读:225      评论:0      收藏:0      [点我收藏+]

标签:lib   enc   oba   learn   alt   pos   压缩   9.png   read   

AutoEncoder是包含一个压缩和解压缩的过程,属于一种无监督学习的降维技术。

技术分享图片

神经网络接受大量信息,有时候接受的数据达到上千万,可以通过压缩

提取原图片最具有代表性的信息,压缩输入的信息量,在将缩减后的数据放入神经网络中学习,如此学习起来变得轻松了

自编码在这个时候使用,可以将自编码归为无监督学习,类似于PCA,自编码可以为属性降维

技术分享图片

手写体识别代码AutoEncoder

from __future__ import division, print_function, absolute_import

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(MNIST_data, one_hot=False)


# Visualize decoder setting
# Parameters
learning_rate = 0.01
training_epochs = 5
batch_size = 256
display_step = 1
examples_to_show = 10

# Network Parameters
n_input = 784  # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])

# hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
weights = {
    encoder_h1: tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    encoder_h2: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    decoder_h1: tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
    decoder_h2: tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
    encoder_b1: tf.Variable(tf.random_normal([n_hidden_1])),
    encoder_b2: tf.Variable(tf.random_normal([n_hidden_2])),
    decoder_b1: tf.Variable(tf.random_normal([n_hidden_1])),
    decoder_b2: tf.Variable(tf.random_normal([n_input])),
}

# Building the encoder
def encoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[encoder_h1]),
                                   biases[encoder_b1]))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[encoder_h2]),
                                   biases[encoder_b2]))
    return layer_2


# Building the decoder
def decoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[decoder_h1]),
                                   biases[decoder_b1]))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[decoder_h2]),
                                   biases[decoder_b2]))
    return layer_2


"""

# Visualize encoder setting
# Parameters
learning_rate = 0.01    # 0.01 this learning rate will be better! Tested
training_epochs = 10
batch_size = 256
display_step = 1

# Network Parameters
n_input = 784  # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])

# hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2  #2D show

weights = {
    ‘encoder_h1‘: tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
    ‘encoder_h2‘: tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
    ‘encoder_h3‘: tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
    ‘encoder_h4‘: tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),

    ‘decoder_h1‘: tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
    ‘decoder_h2‘: tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
    ‘decoder_h3‘: tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
    ‘decoder_h4‘: tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
    ‘encoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])),
    ‘encoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])),
    ‘encoder_b3‘: tf.Variable(tf.random_normal([n_hidden_3])),
    ‘encoder_b4‘: tf.Variable(tf.random_normal([n_hidden_4])),

    ‘decoder_b1‘: tf.Variable(tf.random_normal([n_hidden_3])),
    ‘decoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])),
    ‘decoder_b3‘: tf.Variable(tf.random_normal([n_hidden_1])),
    ‘decoder_b4‘: tf.Variable(tf.random_normal([n_input])),
}


def encoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1‘]),
                                   biases[‘encoder_b1‘]))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2‘]),
                                   biases[‘encoder_b2‘]))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[‘encoder_h3‘]),
                                   biases[‘encoder_b3‘]))
    layer_4 = tf.add(tf.matmul(layer_3, weights[‘encoder_h4‘]),
                                    biases[‘encoder_b4‘])
    return layer_4


def decoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1‘]),
                                   biases[‘decoder_b1‘]))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2‘]),
                                   biases[‘decoder_b2‘]))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[‘decoder_h3‘]),
                                biases[‘decoder_b3‘]))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights[‘decoder_h4‘]),
                                biases[‘decoder_b4‘]))
    return layer_4
"""

# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)

# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X

# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)


# Launch the graph
with tf.Session() as sess:
    # tf.initialize_all_variables() no long valid from
    # 2017-03-02 if using tensorflow >= 0.12
    if int((tf.__version__).split(.)[1]) < 12 and int((tf.__version__).split(.)[0]) < 1:
        init = tf.initialize_all_variables()
    else:
        init = tf.global_variables_initializer()
    sess.run(init)
    total_batch = int(mnist.train.num_examples/batch_size)
    # Training cycle
    for epoch in range(training_epochs):
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
        # Display logs per epoch step
        if epoch % display_step == 0:
            print("Epoch:", %04d % (epoch+1),
                  "cost=", "{:.9f}".format(c))

    print("Optimization Finished!")

    # # Applying encode and decode over test set
    encode_decode = sess.run(
        y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
    # Compare original images with their reconstructions
    f, a = plt.subplots(2, 10, figsize=(10, 2))
    for i in range(examples_to_show):
        a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
        a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
    plt.show()

    # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
    # plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
    # plt.colorbar()
    # plt.show()

 

技术分享图片

利用AutoEncoder进行类似于PCA的降维

代码:

from __future__ import division, print_function, absolute_import

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(MNIST_data, one_hot=False)

"""
# Visualize decoder setting
# Parameters
learning_rate = 0.01
training_epochs = 5
batch_size = 256
display_step = 1
examples_to_show = 10

# Network Parameters
n_input = 784  # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])

# hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
weights = {
    ‘encoder_h1‘: tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    ‘encoder_h2‘: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    ‘decoder_h1‘: tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
    ‘decoder_h2‘: tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
    ‘encoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])),
    ‘encoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])),
    ‘decoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])),
    ‘decoder_b2‘: tf.Variable(tf.random_normal([n_input])),
}

# Building the encoder
def encoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1‘]),
                                   biases[‘encoder_b1‘]))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2‘]),
                                   biases[‘encoder_b2‘]))
    return layer_2


# Building the decoder
def decoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1‘]),
                                   biases[‘decoder_b1‘]))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2‘]),
                                   biases[‘decoder_b2‘]))
    return layer_2


"""

# Visualize encoder setting
# Parameters
learning_rate = 0.01    # 0.01 this learning rate will be better! Tested
training_epochs = 10
batch_size = 256
display_step = 1

# Network Parameters
n_input = 784  # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])

# hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2  #2D show

weights = {
    encoder_h1: tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
    encoder_h2: tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
    encoder_h3: tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
    encoder_h4: tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),

    decoder_h1: tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
    decoder_h2: tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
    decoder_h3: tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
    decoder_h4: tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
    encoder_b1: tf.Variable(tf.random_normal([n_hidden_1])),
    encoder_b2: tf.Variable(tf.random_normal([n_hidden_2])),
    encoder_b3: tf.Variable(tf.random_normal([n_hidden_3])),
    encoder_b4: tf.Variable(tf.random_normal([n_hidden_4])),

    decoder_b1: tf.Variable(tf.random_normal([n_hidden_3])),
    decoder_b2: tf.Variable(tf.random_normal([n_hidden_2])),
    decoder_b3: tf.Variable(tf.random_normal([n_hidden_1])),
    decoder_b4: tf.Variable(tf.random_normal([n_input])),
}


def encoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[encoder_h1]),
                                   biases[encoder_b1]))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[encoder_h2]),
                                   biases[encoder_b2]))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[encoder_h3]),
                                   biases[encoder_b3]))
    layer_4 = tf.add(tf.matmul(layer_3, weights[encoder_h4]),
                                    biases[encoder_b4])
    return layer_4


def decoder(x):
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[decoder_h1]),
                                   biases[decoder_b1]))
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[decoder_h2]),
                                   biases[decoder_b2]))
    layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[decoder_h3]),
                                biases[decoder_b3]))
    layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights[decoder_h4]),
                                biases[decoder_b4]))
    return layer_4


# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)

# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X

# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)


# Launch the graph
with tf.Session() as sess:
    # tf.initialize_all_variables() no long valid from
    # 2017-03-02 if using tensorflow >= 0.12
    if int((tf.__version__).split(.)[1]) < 12 and int((tf.__version__).split(.)[0]) < 1:
        init = tf.initialize_all_variables()
    else:
        init = tf.global_variables_initializer()
    sess.run(init)
    total_batch = int(mnist.train.num_examples/batch_size)
    # Training cycle
    for epoch in range(training_epochs):
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
        # Display logs per epoch step
        if epoch % display_step == 0:
            print("Epoch:", %04d % (epoch+1),
                  "cost=", "{:.9f}".format(c))

    print("Optimization Finished!")

#     # # Applying encode and decode over test set
#     encode_decode = sess.run(
#         y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
#     # Compare original images with their reconstructions
#     f, a = plt.subplots(2, 10, figsize=(10, 2))
#     for i in range(examples_to_show):
#         a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
#         a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
#     plt.show()

    encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
    plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
    plt.colorbar()
    plt.show()

 

显示如下:

技术分享图片

 

2.3AutoEncoder

标签:lib   enc   oba   learn   alt   pos   压缩   9.png   read   

原文地址:https://www.cnblogs.com/jackchen-Net/p/8125884.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!