利用 sqlalchemy 实现关系表查询功能
下面的例子将完成一个通过关系表进行查询的功能,示例中的数据表均在MySQL中建立,建立过程可以使用 SQL 命令或编写 Python 适配器完成。
示例中用到的表主要有3张,一张personInfo个人信息表,一张account_store账号信息表,以及一张person_account_rel的个人信息与账号关系表。
示例中将会通过已知的人物年龄和id通过个人信息表查出个人姓名(仅为参考示例,请忽略怪异的查找逻辑 :) ),随后根据关系表得到的人物名字所对应的账号id,再根据给定的账号信息筛选出所需的账号密码结果。
完整代码如下
1 from sqlalchemy import create_engine, exc, orm 2 from sqlalchemy.ext.declarative import declarative_base 3 from sqlalchemy.sql.schema import Table, ForeignKey, Column 4 from sqlalchemy.sql.sqltypes import Integer, VARCHAR 5 from sqlalchemy.dialects.mysql.base import TINYINT 6 from sqlalchemy.orm import relationship 7 8 9 # declarative_base function will return a class which using active record pattern 10 # It will combine object opeartion and data operation automatically 11 Base = declarative_base() 12 13 # This is rel table 14 t_PersonAccount_Rel = Table(‘personaccount_rel‘, 15 Base.metadata, 16 Column(‘name‘, VARCHAR(8), ForeignKey(‘person_info.name‘)), 17 Column(‘account_id‘, Integer, ForeignKey(‘account_store.account_id‘))) 18 19 # Create table based on Base obj 20 class PersonInfo(Base): 21 __table__ = Table(‘person_info‘, 22 Base.metadata, 23 Column(‘id‘, TINYINT(4)), 24 Column(‘age‘, Integer), 25 Column(‘name‘, VARCHAR(8), primary_key=True)) 26 27 # Need to search via person --> account 28 # So build up a relationship between person and account 29 # relationship(class_name, class, class_name) 30 AccountStore = relationship(‘AccountStore‘, 31 secondary=t_PersonAccount_Rel, 32 backref=‘PersonInfo‘) 33 34 class AccountStore(Base): 35 __table__ = Table(‘account_store‘, 36 Base.metadata, 37 Column(‘account_id‘, Integer, primary_key=True), 38 Column(‘items‘, VARCHAR(20)), 39 Column(‘account‘, VARCHAR(50)), 40 Column(‘password‘, VARCHAR(50))) 41 42 def __repr__(self): 43 return ‘Items: %s\nAccount: %s\nPassword: %s‘ % (self.items, self.account, self.password) 44 45 class SqlalchemyActor(): 46 def __init__(self, dsn): 47 try: 48 engine = create_engine(dsn, echo=False, max_overflow=5, encoding=‘utf-8‘) 49 except ImportError: 50 raise RuntimeError 51 engine.connect() 52 53 # sessionmaker is a factory obj, generate a Session instance, reload __call__ function 54 # __call__ function will return a session class each time 55 Session = orm.sessionmaker(bind=engine) 56 # use Session() to create a class, and assign it to an attribute 57 self.session = Session() 58 # Assign costom table and engine to attribute 59 self.account = AccountStore.__table__ 60 self.engine = engine 61 # Bind engine and table 62 # Method one: assign manually one by one 63 self.account.metadata.bind = engine 64 # Method two: use reflect to map all/partly Table schema 65 #Base.metadata.reflect(engine) 66 67 class PersonInfoCriteria(): 68 """ 69 This is the criteria for PersonInfo 70 Replace None with input value 71 """ 72 def __init__(self, **kwargs): 73 self.id = None 74 self.age = None 75 self.name = None 76 self.result = None 77 78 for field, argument in kwargs.items(): 79 if str(field) == ‘id‘: 80 self.id = argument 81 if str(field) == ‘age‘: 82 self.age = argument 83 if str(field) == ‘name‘: 84 self.name = argument 85 86 class PersonInfoService(): 87 """ 88 This is the service for PersonInfo 89 Generate condition and filter out expression for filter(SQL) according to criteria value 90 """ 91 92 # This function to build criteria(expression/clause) for filter(SQL) 93 # Note: PersonInfo is based on declarative_base, 94 # so PersonInfo.attr == value is an condition expression(clause) for sqlalchemy function 95 # also PersonInfo.attr.like(value) too, like function equal to "%" in SQL 96 # finally return the list of clauses 97 @staticmethod 98 def _criteria_builder(person_info_criteria): 99 clauses = [] 100 if person_info_criteria.id: 101 clauses.append(PersonInfo.id == person_info_criteria.id) 102 if person_info_criteria.age: 103 clauses.append(PersonInfo.age == person_info_criteria.age) 104 if person_info_criteria.name: 105 if ‘%‘ in person_info_criteria.name: 106 clauses.append(PersonInfo.name.like(person_info_criteria.name)) 107 else: 108 clauses.append(PersonInfo.name == person_info_criteria.name) 109 return clauses 110 111 @staticmethod 112 def find(person_info_criteria, session): 113 # Build clauses for session filter 114 clauses = PersonInfoService._criteria_builder(person_info_criteria) 115 # Query PersonInfo and filter according to clauses, use all() function to return as list 116 person_info_criteria.result = session.query(PersonInfo).filter(*clauses).all() 117 return person_info_criteria.result 118 119 class AccountStoreCriteria(): 120 def __init__(self, **kwargs): 121 self.items = None 122 self.account = None 123 self.password = None 124 self.account_id = None 125 self.person_info = None 126 self.result = None 127 128 for field, argument in kwargs.items(): 129 if field == ‘items‘: 130 self.items = argument 131 if field == ‘account‘: 132 self.account = argument 133 if field == ‘password‘: 134 self.password = argument 135 if field == ‘account_id‘: 136 self.account_id = argument 137 if field == ‘person_info‘: 138 self.person_info = argument 139 140 class AccountStoreService(): 141 142 @staticmethod 143 def _criteria_builder(account_store_criteria): 144 clauses = [] 145 if account_store_criteria.items: 146 clauses.append(AccountStore.items == account_store_criteria.items) 147 if account_store_criteria.account: 148 if ‘%‘ in account_store_criteria.account: 149 clauses.append(AccountStore.account.like(account_store_criteria.account)) 150 else: 151 clauses.append(AccountStore.account == account_store_criteria.account) 152 if account_store_criteria.password: 153 clauses.append(AccountStore.password == account_store_criteria.password) 154 if account_store_criteria.account_id: 155 clauses.append(AccountStore.accout_id == account_store_criteria.account_id) 156 157 # person_info from PersonInfoService filter 158 # Note: pnif.AccountStore is an instrumentedList type obj 159 # sqlalchemy use instrumentedList to simulate one-to-many and many-to-many relationships 160 # sqlalchemy does not support in_ many to many relationships yet 161 # in_() function to filter out account id in range 162 # SQL: SELECT * FROM account_store WHERE account_store.account_id in (...) 163 if account_store_criteria.person_info: 164 account_ids = [] 165 for pnif in account_store_criteria.person_info: 166 for acid in pnif.AccountStore: 167 account_ids.append(acid.account_id) 168 clauses.append(AccountStore.account_id.in_(account_ids)) 169 170 return clauses 171 172 @staticmethod 173 def find(account_store_criteria, session): 174 clauses = AccountStoreService._criteria_builder(account_store_criteria) 175 account_store_criteria.result = session.query(AccountStore).filter(*clauses).all() 176 return account_store_criteria.result 177 178 if __name__ == ‘__main__‘: 179 #dsn = ‘mssql+pyodbc://ItpReadOnly:@reaedonlyENC@encitp.cn.ao.ericsson.se\itp:0/ITP‘ 180 dsn = ‘mysql+mysqldb://root:root@localhost/test_db‘ 181 ses = SqlalchemyActor(dsn) 182 session = ses.session 183 184 # Filter out the person information according to id and age 185 id, age = 2, 7 186 clauses = PersonInfoCriteria(id=id, age=age) 187 # re is an obj list of PersonInfo, use obj.attr to fetch value 188 person_info = PersonInfoService.find(clauses, session) 189 name = person_info[0].name 190 print(‘Filter out user: %s‘ % name) 191 192 # Filter out the account id according to name via relation table 193 items = [‘WeChat‘, ‘Qq‘] 194 for it in items: 195 clauses = AccountStoreCriteria(items=it, person_info=person_info) 196 account_info = AccountStoreService.find(clauses, session) 197 for ac in account_info: 198 print(30*‘-‘+‘\n%s‘ % name) 199 print(ac)
下面将分段进行解释
首先对所需的模块进行相应的导入
from sqlalchemy import create_engine, exc, orm from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.sql.schema import Table, ForeignKey, Column from sqlalchemy.sql.sqltypes import Integer, VARCHAR from sqlalchemy.dialects.mysql.base import TINYINT from sqlalchemy.orm import relationship
随后利用声明层函数产生一个声明层类,这个声明层类使用了Active Record设计模式,能够自动将对象的修改变为表格的修改
# declarative_base function will return a class which using active record pattern # It will combine object opeartion and data operation automatically Base = declarative_base()
接下来将进行表格建立的工作,首先建立一张关系表类对应数据库中的关系表格,此处的关系表格采用显示的ORM方式,即不基于声明层的表格类,同时定义外键信息。
# This is rel table t_PersonAccount_Rel = Table(‘personaccount_rel‘, Base.metadata, Column(‘name‘, VARCHAR(8), ForeignKey(‘person_info.name‘)), Column(‘account_id‘, Integer, ForeignKey(‘account_store.account_id‘)))
随后利用声明层建立起两张信息表,由于需要通过个人信息表与关系表两张表查找到账号的信息,因此在定义PersonInfo表类的时候,需要同时定义一个关系对象,利用relationship函数建立起表中的关系对象。
# Create table based on Base obj class PersonInfo(Base): __table__ = Table(‘person_info‘, Base.metadata, Column(‘id‘, TINYINT(4)), Column(‘age‘, Integer), Column(‘name‘, VARCHAR(8), primary_key=True)) # Need to search via person --> account # So build up a relationship between person and account # relationship(class_name, class, class_name) AccountStore = relationship(‘AccountStore‘, secondary=t_PersonAccount_Rel, backref=‘PersonInfo‘) class AccountStore(Base): __table__ = Table(‘account_store‘, Base.metadata, Column(‘account_id‘, Integer, primary_key=True), Column(‘items‘, VARCHAR(20)), Column(‘account‘, VARCHAR(50)), Column(‘password‘, VARCHAR(50))) def __repr__(self): return ‘Items: %s\nAccount: %s\nPassword: %s‘ % (self.items, self.account, self.password)
最后定义一个sqlalchemy的执行器,利用基本建立步骤建立起各项对应关系
Note: 由于使用的是声明层,因此此处的metadata的绑定可以省略,这部分可参考声明层表对象的两种建立方式。
class SqlalchemyActor(): def __init__(self, dsn): try: engine = create_engine(dsn, echo=False, max_overflow=5, encoding=‘utf-8‘) except ImportError: raise RuntimeError engine.connect() # sessionmaker is a factory obj, generate a Session instance, reload __call__ function # __call__ function will return a session class each time Session = orm.sessionmaker(bind=engine) # use Session() to create a class, and assign it to an attribute self.session = Session() # Assign costom table and engine to attribute self.account = AccountStore.__table__ self.engine = engine # Bind engine and table # Method one: assign manually one by one self.account.metadata.bind = engine # Method two: use reflect to map all/partly Table schema #Base.metadata.reflect(engine)
接着,将进行信息标准类及信息筛选类的建立,利用这两个类来完成类似于SQL中的条件信息筛选。
首先是信息标准类,用于存储所需要进行处理的条件信息,根据传入的参数对筛选信息类的属性进行赋值。
class PersonInfoCriteria(): """ This is the criteria for PersonInfo Replace None with input value """ def __init__(self, **kwargs): self.id = None self.age = None self.name = None self.result = None for field, argument in kwargs.items(): if str(field) == ‘id‘: self.id = argument if str(field) == ‘age‘: self.age = argument if str(field) == ‘name‘: self.name = argument
接着建立起一个个人信息的处理服务类 PersonInfoService,在这个类中将建立起两个静态方法,首先是_criteria_builder静态方法(确切来说应该算是clauses_builder),该静态方法会根据属性的存在,来建立起一个clauses条件语句的列表,随后再定义一个查找函数,利用query获取表格信息,再利用filter函数及前面的clause条件语句进行筛选得到最终的结果。
Note: 此处值得注意的是,由于此处的PersonInfo是一个声明层表格类,因此其==号两边的返回结果将不是bool值的True或False,而是一个等价于SQL条件的语句,一般用于filter函数中实现条件筛选。参考filter()函数的传入参数形式。
class PersonInfoService(): """ This is the service for PersonInfo Generate condition and filter out expression for filter(SQL) according to criteria value """ # This function to build criteria(expression/clause) for filter(SQL) # Note: PersonInfo is based on declarative_base, # so PersonInfo.attr == value is an condition expression(clause) for sqlalchemy function # also PersonInfo.attr.like(value) too, like function equal to "%" in SQL # finally return the list of clauses @staticmethod def _criteria_builder(person_info_criteria): clauses = [] if person_info_criteria.id: clauses.append(PersonInfo.id == person_info_criteria.id) if person_info_criteria.age: clauses.append(PersonInfo.age == person_info_criteria.age) if person_info_criteria.name: if ‘%‘ in person_info_criteria.name: clauses.append(PersonInfo.name.like(person_info_criteria.name)) else: clauses.append(PersonInfo.name == person_info_criteria.name) return clauses @staticmethod def find(person_info_criteria, session): # Build clauses for session filter clauses = PersonInfoService._criteria_builder(person_info_criteria) # Query PersonInfo and filter according to clauses, use all() function to return as list person_info_criteria.result = session.query(PersonInfo).filter(*clauses).all() return person_info_criteria.result
与前面类似,此处针对account_store类建立其标准类及服务类
Note: 此处应当注意的是,由于需要通过关系表的查询,因此需要在这个筛选标准类中多增加一项筛选标准,即传入的PersonInfo筛选结果,若传入了person_info项目,则说明需要对个人信息进行关系筛选。
class AccountStoreCriteria(): def __init__(self, **kwargs): self.items = None self.account = None self.password = None self.account_id = None self.person_info = None self.result = None for field, argument in kwargs.items(): if field == ‘items‘: self.items = argument if field == ‘account‘: self.account = argument if field == ‘password‘: self.password = argument if field == ‘account_id‘: self.account_id = argument if field == ‘person_info‘: self.person_info = argument
Note: 此处的表格服务类值得注意的是,在创建条件子句时,对于中间表的处理。由于在sqlalchemy的in_()函数尚且不支持多对多筛选,此处sqlalchemy利用instrumentedList来处理一对多或多对多的情况,在之前建立的Account_Store关系对象中,AccountStore即是instrumentList类型,可以利用instrumentList.in_(list)建立条件语句。此处利用for循环首先获取所有需要的account_id信息,生成一个列表,随后利用id列表建立等价于SQL的IN条件语句,添加到clause中。关于instrumentedList,参考stackoverflow的答案。
class AccountStoreService(): @staticmethod def _criteria_builder(account_store_criteria): clauses = [] if account_store_criteria.items: clauses.append(AccountStore.items == account_store_criteria.items) if account_store_criteria.account: if ‘%‘ in account_store_criteria.account: clauses.append(AccountStore.account.like(account_store_criteria.account)) else: clauses.append(AccountStore.account == account_store_criteria.account) if account_store_criteria.password: clauses.append(AccountStore.password == account_store_criteria.password) if account_store_criteria.account_id: clauses.append(AccountStore.accout_id == account_store_criteria.account_id) # person_info from PersonInfoService filter # Note: pnif.AccountStore is an instrumentedList type obj # sqlalchemy use instrumentedList to simulate one-to-many and many-to-many relationships # sqlalchemy does not support in_ many to many relationships yet # in_() function to filter out account id in range # SQL: SELECT * FROM account_store WHERE account_store.account_id in (...) if account_store_criteria.person_info: account_ids = [] for pnif in account_store_criteria.person_info: for acid in pnif.AccountStore: account_ids.append(acid.account_id) clauses.append(AccountStore.account_id.in_(account_ids)) return clauses @staticmethod def find(account_store_criteria, session): clauses = AccountStoreService._criteria_builder(account_store_criteria) account_store_criteria.result = session.query(AccountStore).filter(*clauses).all() return account_store_criteria.result
最后是执行的主程序,连接本地数据库,通过id和age筛选出name信息,随后利用关系表通过name与account_id的对应,以及所需账户类型,找到账户信息,最终显示。
if __name__ == ‘__main__‘: dsn = ‘mysql+mysqldb://root:root@localhost/test_db‘ ses = SqlalchemyActor(dsn) session = ses.session # Filter out the person information according to id and age id, age = 2, 7 clauses = PersonInfoCriteria(id=id, age=age) # re is an obj list of PersonInfo, use obj.attr to fetch value person_info = PersonInfoService.find(clauses, session) name = person_info[0].name print(‘Filter out user: %s‘ % name) # Filter out the account id according to name via relation table items = [‘WeChat‘, ‘Qq‘] for it in items: clauses = AccountStoreCriteria(items=it, person_info=person_info) account_info = AccountStoreService.find(clauses, session) for ac in account_info: print(30*‘-‘+‘\n%s‘ % name) print(ac)
运行代码得到结果
Filter out user: LIKE ------------------------------ LIKE Items: WeChat Account: hereisac Password: 12345 ------------------------------ LIKE Items: Qq Account: re32isac Password: 123435
从最终显示的结果可以看到,通过一系列筛选过程,得到了最终所需的账号密码信息
相关阅读