码迷,mamicode.com
首页 > 编程语言 > 详细

【CodeForces】E. New Year and Entity Enumeration

时间:2018-01-05 20:46:36      阅读:324      评论:0      收藏:0      [点我收藏+]

标签:技术分享   mod   return   targe   problem   ace   code   最小   +=   

【题目】E. New Year and Entity Enumeration

【题意】给定集合T包含n个m长二进制数,要求包含集合T且满足以下条件的集合S数:长度<=m,非和与的结果都在集合中。(详细的题意见原题)

【算法】数学(贝尔数)

【题解】这道题确实不太能理解这种做法,所以就简单写写了。

先不考虑S须包含集合T。

对于一个方案,按位考虑,所有含位 i 的数字and起来得到含该位的最小数字,记为f[i]。

对于f[x]≠f[y],有f[x]&f[y]=0,证明:!(f[x]&f[y])&f[x]这个数字含有x位且<f[x]。

那么不同位的f[x],要么相等要么不等且无交集,那么方案数对应1~m的集合划分数(贝尔数)。

贝尔数:B(n)=ΣC(n-1,k)*B(k),k=0~n-1。求解复杂度O(m^2)。

最后考虑T,不同位如果竖着看的二进制数不同那么其f值一定不能相同,所以分成若干部分各自求解后再相乘即是答案。

技术分享图片
#include<cstdio>
#include<map>
#define ll long long
using namespace std;
const int maxn=1010,MOD=1e9+7;
int c[maxn][maxn],f[maxn],n,m;
ll b[maxn];
map<ll,int>mp;
int main(){
    scanf("%d%d",&m,&n);
    for(int i=0;i<n;i++){
        for(int j=1;j<=m;j++){
            int x;
            scanf("%1d",&x);
            b[j]+=(1ll*x)<<i;
        }
    }
    for(int i=1;i<=m;i++)mp[b[i]]++;
    for(int i=0;i<=m;i++){
        c[i][0]=1;
        for(int j=1;j<=i;j++)c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
    }
    f[0]=1;
    for(int i=1;i<=m;i++){
        for(int j=0;j<i;j++)f[i]=(f[i]+1ll*c[i-1][j]*f[j]%MOD)%MOD;
    }
    int ans=1;
    for(map<ll,int>::iterator it=mp.begin();it!=mp.end();it++)ans=1ll*ans*f[it->second]%MOD;
    printf("%d",ans);
    return 0;
}
View Code

 

【CodeForces】E. New Year and Entity Enumeration

标签:技术分享   mod   return   targe   problem   ace   code   最小   +=   

原文地址:https://www.cnblogs.com/onioncyc/p/8206530.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!