标签:个数 转换 rgs 数据 随机 dom 4行 max str
import numpy ''' -使用场景:创建向量和矩阵(numpy.ndarray) -注意:numpy的ndarray要求所有元素的类型必须一致 - 假如你输入的list元素类型不一致,转换为ndarry的时候,会自动转型。 - 例如,某个元素是str,其他元素是int,那么,所有元素都会被转型为str ''' from sklearn.utils.fixes import astype vector = numpy.array(['001','zhangsan','man',24]) print(type(vector)) print(vector.dtype) print(vector) print(vector.shape) # <class 'numpy.ndarray'> # <U8 # ['001' 'zhangsan' 'man' '24'] # (4,) matrix = numpy.array([[1.0,777,999.]]) print(type(matrix)) print(matrix.dtype) print(matrix) print(matrix.shape) # <class 'numpy.ndarray'> # float64 # [[ 1. 777. 999.]] # (1, 3) matrix = numpy.array([['001','zhangsan','man','24'],['002','lisi','man','24']]) print(type(matrix)) print(matrix.dtype) print(matrix) print(matrix.shape) # <class 'numpy.ndarray'> # <U8 # [['001' 'zhangsan' 'man' '24'] # ['002' 'lisi' 'man' '24']] # (2, 4) ''' 矩阵操作: ''' matrix = numpy.array([['00','01','02','03'], ['10','11','12','13'], ['20','21','22','23'], ['30','31','32','33']]) print(matrix.shape,matrix.ndim,matrix.size) # 行列数shape,纬度数ndim,元素个数size # (4, 4) 2 16 print(matrix[:,1]) #只取第2列 # ['01' '11' '21' '31'] print(matrix[1,:]) #只取第2行 # ['10' '11' '12' '13'] print(matrix[1,1]) #只取第2行第2列 # 11 print(matrix[1:3,:]) #只取第2、3行 (注意 1:3 不含右边边界 第4行) # [['10' '11' '12' '13'] # ['20' '21' '22' '23']] print(matrix[:,1:3]) #只取第2、3列 # [['01' '02'] # ['11' '12'] # ['21' '22'] # ['31' '32']] print(matrix[1:,1:]) #只取第2行之后的行,第2列之后的列 # [['11' '12' '13'] # ['21' '22' '23'] # ['31' '32' '33']] print(matrix.dtype) #ndarray的类型 # <U2 print(matrix.astype(float)) #ndarray的类型 转换 # [[ 0. 1. 2. 3.] # [ 10. 11. 12. 13.] # [ 20. 21. 22. 23.] # [ 30. 31. 32. 33.]] print(matrix.astype(float).dtype) #ndarray的类型 转换之后 # float64 ''' 矩阵初始化: ''' print(numpy.zeros((2,3))) #快速编造全0矩阵 (常用于矩阵初始化) # [[ 0. 0. 0.] # [ 0. 0. 0.]] print(numpy.ones((2,3),dtype=numpy.int32)) #快速编造全1矩阵 (常用于矩阵初始化) # [[1 1 1] # [1 1 1]] print(numpy.eye(3)) #单位方阵 # [[ 1. 0. 0.] # [ 0. 1. 0.] # [ 0. 0. 1.]] print(numpy.eye(2,3)) #单位矩阵 # [[ 1. 0. 0.] # [ 0. 1. 0.]] print(numpy.arange(12)) #快速编造数列 # [0 1 2 3 4 5 6 7 8 9 10 11] print(numpy.arange(12).reshape(3,4)) #重新排列矩阵 # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(numpy.arange(1,22,3)) #快速编造数列 起始值1 依次加3 直至小于22 # [ 1 4 7 10 13 16 19] print(numpy.random.random((2))) #随机向量 0至1之间 # [ 0.77478872 0.36609742] print(numpy.random.random((2,3))) #随机矩阵 0至1之间 # [[ 0.72243154 0.33383428 0.11111886] # [ 0.85122432 0.68508064 0.51619949]] print(numpy.linspace(0, 2, 10)) #在0至2之间,取10个数,平均的 # [ 0. 0.22222222 0.44444444 0.66666667 0.88888889 1.11111111 1.33333333 1.55555556 1.77777778 2. ] ''' 矩阵运算: ''' matrixA = numpy.array([[1,2,3], [4,5,6], [7,8,9]]) matrixB = numpy.array([[-1,-2,-3], [-4,-5,-6], [-7,-8,-9]]) print(matrixA + matrixB) #矩阵相加 # [[0 0 0] # [0 0 0] # [0 0 0]] print(matrixA * 2) #矩阵数乘 # [[ 2 4 6] # [ 8 10 12] # [14 16 18]] print(matrixA * matrixB) #矩阵对应元素相乘(姑且叫做点乘),新矩阵的元素,是原来两个矩阵的对应元素相乘 # [[ -1 -4 -9] # [-16 -25 -36] # [-49 -64 -81]] print(matrixA.dot(matrixB)) #矩阵相乘 行列相乘 或者 numpy.dot(matrixA,matrixB) # [[ -30 -36 -42] # [ -66 -81 -96] # [-102 -126 -150]] print(matrixA.T) #转置 # [[1 4 7] # [2 5 8] # [3 6 9]] print(numpy.vstack((matrixA,matrixB))) #行拼接 # [[ 1 2 3] # [ 4 5 6] # [ 7 8 9] # [-1 -2 -3] # [-4 -5 -6] # [-7 -8 -9]] print(numpy.hstack((matrixA,matrixB))) #列拼接 # [[ 1 2 3 -1 -2 -3] # [ 4 5 6 -4 -5 -6] # [ 7 8 9 -7 -8 -9]] print(numpy.vsplit(matrixA,3)) #行切分 # [array([[1, 2, 3]]), array([[4, 5, 6]]), array([[7, 8, 9]])] print(numpy.vsplit(matrixA,(0,1))) #行切分 在第0列切一刀 在第1列切一刀,爱切几刀就几刀 # [array([], shape=(0, 3), dtype=int32), # array([[1, 2, 3]]), # array([[4, 5, 6], # [7, 8, 9]])] print(numpy.hsplit(matrixA,3)) #列切分 # [array([[1], # [4], # [7]]), # array([[2], # [5], # [8]]), # array([[3], # [6], # [9]])] matrixC = matrixA.view() #浅层复制,视图,其实matrixA和matrixC都是共享同一份数据,不推荐使用view matrixC = matrixA.copy() #深层复制,整整的数据拷贝,matrixA和matrixC是两份数据,互不干扰 print(matrixC) # [[1 2 3] # [4 5 6] # [7 8 9]] matrixC = numpy.tile(matrixA,(2,3)) #复制,深层的,把矩阵按行按列各复制几次 print(matrixC) # [[1 2 3 1 2 3 1 2 3] # [4 5 6 4 5 6 4 5 6] # [7 8 9 7 8 9 7 8 9] # [1 2 3 1 2 3 1 2 3] # [4 5 6 4 5 6 4 5 6] # [7 8 9 7 8 9 7 8 9]] matrixD = numpy.array([[1,-2,-3], [4,-5,-6], [7,-8,-9]]) print(matrixD.argmax(axis=1)) #按行查找,最大元素在该行中的索引 # [0 0 0] print(matrixD.argmax(axis=0)) #按列查找,最大元素在该行中的索引 # [2 0 0] matrixE = numpy.array([[1,-2,-3], [9,3,4], [7,-8,-9]]) print(numpy.sort(matrixE, axis=1)) #排序,按行,升序 # [[-3 -2 1] # [ 3 4 9] # [-9 -8 7]] print(numpy.argsort(matrixE, axis=1)) #排序,按行,升序,返回坐标矩阵 # [[2 1 0] # [1 2 0] # [2 1 0]] print(numpy.sort(matrixE, axis=0)) #排序,按列,升序 # [[ 1 -8 -9] # [ 7 -2 -3] # [ 9 3 4]] print(numpy.argsort(matrixE, axis=0)) #排序,按列,升序,返回坐标矩阵 # [[0 2 2] # [2 0 0] # [1 1 1]]标签:个数 转换 rgs 数据 随机 dom 4行 max str
原文地址:http://blog.51cto.com/hadoooo/2063981