码迷,mamicode.com
首页 > Web开发 > 详细

TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu

时间:2018-01-27 21:13:55      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:oop   optimize   err   ack   对比   数字   enc   reduce   pre   

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

#Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False)


# Parameter
learning_rate = 0.01
training_epochs = 10 
batch_size = 256
display_step = 1
examples_to_show = 10

# Network Parameters
n_input = 784 

#tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input])

# hidden layer settings
n_hidden_1 = 256 
n_hidden_2 = 128 
weights = { ‘encoder_h1‘:tf.Variable(tf.random_normal([n_input,n_hidden_1])), ‘encoder_h2‘: tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])), ‘decoder_h1‘: tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])), ‘decoder_h2‘: tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { ‘encoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])), ‘encoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])), ‘decoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])), ‘decoder_b2‘: tf.Variable(tf.random_normal([n_input])), } #定义encoder def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1‘]), biases[‘encoder_b1‘])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2‘]), biases[‘encoder_b2‘])) return layer_2 #定义decoder def decoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1‘]), biases[‘decoder_b1‘])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2‘]), biases[‘decoder_b2‘])) return layer_2 # Construct model encoder_op = encoder(X) # 128 Features decoder_op = decoder(encoder_op) # 784 Features # Prediction y_pred = decoder_op # Targets (Labels) are the input data. y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess:
sess.run(tf.initialize_all_variables()) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", ‘%04d‘ % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") # # Applying encode and decode over test set encode_decode = sess.run( y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) plt.title(‘Matplotlib,AE--Jason Niu‘) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) plt.show()

技术分享图片

 

TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu

标签:oop   optimize   err   ack   对比   数字   enc   reduce   pre   

原文地址:https://www.cnblogs.com/yunyaniu/p/8367053.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!