import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter learning_rate = 0.001 training_epochs = 20 batch_size = 256 display_step = 1 examples_to_show = 10 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures) X=tf.placeholder("float", [None,n_input]) # hidden layer settings n_hidden_1 = 128 n_hidden_2 = 64 n_hidden_3 = 10 n_hidden_4 = 2 weights = { ‘encoder_h1‘: tf.Variable(tf.random_normal([n_input,n_hidden_1])), ‘encoder_h2‘: tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])), ‘encoder_h3‘: tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])), ‘encoder_h4‘: tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), ‘decoder_h1‘: tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])), ‘decoder_h2‘: tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])), ‘decoder_h3‘: tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])), ‘decoder_h4‘: tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { ‘encoder_b1‘: tf.Variable(tf.random_normal([n_hidden_1])), ‘encoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])), ‘encoder_b3‘: tf.Variable(tf.random_normal([n_hidden_3])), ‘encoder_b4‘: tf.Variable(tf.random_normal([n_hidden_4])), ‘decoder_b1‘: tf.Variable(tf.random_normal([n_hidden_3])), ‘decoder_b2‘: tf.Variable(tf.random_normal([n_hidden_2])), ‘decoder_b3‘: tf.Variable(tf.random_normal([n_hidden_1])), ‘decoder_b4‘: tf.Variable(tf.random_normal([n_input])), } def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1‘]), biases[‘encoder_b1‘])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2‘]), biases[‘encoder_b2‘])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[‘encoder_h3‘]), biases[‘encoder_b3‘])) layer_4 = tf.add(tf.matmul(layer_3, weights[‘encoder_h4‘]), biases[‘encoder_b4‘]) return layer_4 #定义decoder def decoder(x): # Decoder Hidden layer with sigmoid activation #2 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1‘]), biases[‘decoder_b1‘])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2‘]), biases[‘decoder_b2‘])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[‘decoder_h3‘]), biases[‘decoder_b3‘])) layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights[‘decoder_h4‘]), biases[‘decoder_b4‘])) return layer_4 # Construct model encoder_op = encoder(X) # 128 Features decoder_op = decoder(encoder_op) # 784 Features # Prediction y_pred = decoder_op #After # Targets (Labels) are the input data. y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess: sess.run(tf.global_variables_initializer()) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", ‘%04d‘ % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images}) plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels) plt.title(‘Matplotlib,AE,classification--Jason Niu‘) plt.show()