码迷,mamicode.com
首页 > Web开发 > 详细

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

时间:2018-02-01 10:47:18      阅读:231      评论:0      收藏:0      [点我收藏+]

标签:evel   sof   dict   net   path   loss   ati   比例   function   

3、Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3

http://blog.csdn.net/sunbow0

第三章Convolution Neural Network (卷积神经网络)

3实例

3.1 測试数据

依照上例数据,或者新建图片识别数据。

3.2 CNN实例

???//2 測试数据

???Logger.getRootLogger.setLevel(Level.WARN)

???valdata_path="/user/tmp/deeplearn/train_d.txt"

???valexamples=sc.textFile(data_path).cache()

???valtrain_d1=examples.map{ line =>

?????valf1 = line.split("\t")

?????valf =f1.map(f => f.toDouble)

?????valy =f.slice(0,10)

?????valx =f.slice(10,f.length)

?????(newBDM(1,y.length, y), (new BDM(1,x.length, x)).reshape(28,28) / 255.0)

???}

???valtrain_d=train_d1.map(f=> (f._1, f._2))

?

???//3 设置训练參数。建立模型

???// opts:迭代步长,迭代次数,交叉验证比例

???valopts= Array(100.0,1.0,0.0)

???train_d.cache

???valnumExamples=train_d.count()

???println(s"numExamples = $numExamples.")

???valCNNmodel=newCNN().

?????setMapsize(new BDM(1,2, Array(28.0,28.0))).

?????setTypes(Array("i", "c","s","c","s")).

?????setLayer(5).

?????setOnum(10).

?????setOutputmaps(Array(0.0, 6.0,0.0,12.0,0.0)).

?????setKernelsize(Array(0.0, 5.0,0.0,5.0,0.0)).

?????setScale(Array(0.0, 0.0,2.0,0.0,2.0)).

?????setAlpha(1.0).

?????setBatchsize(50.0).

?????setNumepochs(1.0).

?????CNNtrain(train_d,opts)

?

???//4 模型測试

???valCNNforecast=CNNmodel.predict(train_d)

???valCNNerror=CNNmodel.Loss(CNNforecast)

???println(s"NNerror = $CNNerror.")

???valprintf1=CNNforecast.map(f=> (f.label.data(0), f.predict_label.data(0))).take(200)

???println("预測结果——实际值:预測值:误差")

???for(i <-0 until printf1.length)

?????println(printf1(i)._1 +"\t" +printf1(i)._2 +"\t" + (printf1(i)._2 -printf1(i)._1))???val numExamples = train_d.count()

???println(s"numExamples = $numExamples.")

???println(mynn._2)

???for(i <-0 to mynn._1.length -1) {

?????print(mynn._1(i) +"\t")

???}

???println()

???println("mynn_W1")

???valtmpw1=mynn._3(0)

???for(i <-0 to tmpw1.rows -1) {

?????for(j <-0 to tmpw1.cols -1) {

??????? print(tmpw1(i,j) + "\t")

?????}

?????println()

???}

???valNNmodel=newNeuralNet().

?????setSize(mynn._1).

?????setLayer(mynn._2).

?????setActivation_function("sigm").

?????setOutput_function("sigm").

?????setInitW(mynn._3).

?????NNtrain(train_d,nnopts)

?

???//5 NN模型測试

???valNNforecast=NNmodel.predict(train_d)

???valNNerror=NNmodel.Loss(NNforecast)

???println(s"NNerror = $NNerror.")

???valprintf1=NNforecast.map(f=> (f.label.data(0), f.predict_label.data(0))).take(200)

???println("预測结果——实际值:预測值:误差")

???for(i <-0 until printf1.length)

?????println(printf1(i)._1 +"\t" +printf1(i)._2 +"\t" + (printf1(i)._2 -printf1(i)._1))?

转载请注明出处:

http://blog.csdn.net/sunbow0

?

?

?

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

标签:evel   sof   dict   net   path   loss   ati   比例   function   

原文地址:https://www.cnblogs.com/llguanli/p/8397493.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!