#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) #返回文件名和文件 features = tf.parse_single_example(serialized_example, features={ ‘label‘: tf.FixedLenFeature([], tf.int64), ‘img_raw‘ : tf.FixedLenFeature([], tf.string), }) img = tf.decode_raw(features[‘img_raw‘], tf.uint8) img = tf.reshape(img, [227, 227, 3]) img = (tf.cast(img, tf.float32) * (1. / 255) - 0.5)*2 label = tf.cast(features[‘label‘], tf.int32) print img,label return img, label def get_batch(image, label, batch_size,crop_size): #数据扩充变换 distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪 distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转 distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化 distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化 #生成batch #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大 #保证数据打的足够乱 images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size, num_threads=1,capacity=2000,min_after_dequeue=1000) return images, label_batch class network(object): #构造函数初始化 卷积层 全连接层 def lenet(self,images,keep_prob): ‘‘‘ 根据tensorflow中的conv2d函数,我们先定义几个基本符号 输入矩阵 W×W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样,不多解释。 filter矩阵 F×F,卷积核 stride值 S,步长 输出宽高为 new_height、new_width 在Tensorflow中对padding定义了两种取值:VALID、SAME。下面分别就这两种定义进行解释说明。 VALID new_height = new_width = (W – F + 1) / S #结果向上取整 SAME new_height = new_width = W / S #结果向上取整 ‘‘‘ images = tf.reshape(images,shape=[-1,28,28,3]) #images = (tf.cast(images,tf.float32)/255.0-0.5)*2 #第一层,卷积层 39,39,3--->5,5,3,32--->39,39,32 #卷积核大小为5*5 输入层深度为3即三通道图像 卷积核深度为32即卷积核的个数 conv1_weights = tf.get_variable("conv1_weights",[5,5,3,32],initializer = tf.truncated_normal_initializer(stddev=0.1)) conv1_biases = tf.get_variable("conv1_biases",[32],initializer = tf.constant_initializer(0.0)) #移动步长为1 使用全0填充 conv1 = tf.nn.conv2d(images,conv1_weights,strides=[1,1,1,1],padding=‘SAME‘) #激活函数Relu去线性化 relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases)) #第二层 最大池化层 39,39,32--->1,2,2,1--->19,19,32 #池化层过滤器大小为2*2 移动步长为2 使用全0填充 pool1 = tf.nn.max_pool(relu1, ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #第三层 卷积层 19,19,32--->5,5,32,64--->19,19,64 #卷积核大小为5*5 当前层深度为32 卷积核的深度为64 conv2_weights = tf.get_variable("conv_weights",[5,5,32,64],initializer = tf.truncated_normal_initializer(stddev=0.1)) conv2_biases = tf.get_variable("conv2_biases",[64],initializer = tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding=‘SAME‘) #移动步长为1 使用全0填充 relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases)) #第四层 最大池化层 19,19,64--->1,2,2,1--->9,9,64 #池化层过滤器大小为2*2 移动步长为2 使用全0填充 pool2 = tf.nn.max_pool(relu2,ksize = [1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #第五层 全连接层 fc1_weights = tf.get_variable("fc1_weights",[7*7*64,1024],initializer = tf.truncated_normal_initializer(stddev=0.1)) fc1_biases = tf.get_variable("fc1_biases",[1024],initializer = tf.constant_initializer(0.1)) #[1,1024] pool2_vector = tf.reshape(pool2,[-1,7*7*64]) #特征向量扁平化 原始的每一张图变成了一行9×9*64列的向量 fc1 = tf.nn.relu(tf.matmul(pool2_vector,fc1_weights)+fc1_biases) #为了减少过拟合 加入dropout层 fc1_dropout = tf.nn.dropout(fc1,keep_prob) #第六层 全连接层 #神经元节点数为1024 分类节点2 fc2_weights = tf.get_variable("fc2_weights",[1024,2],initializer=tf.truncated_normal_initializer(stddev=0.1)) fc2_biases = tf.get_variable("fc2_biases",[2],initializer = tf.constant_initializer(0.1)) fc2 = tf.matmul(fc1_dropout,fc2_weights) + fc2_biases return fc2 def lenet_loss(self,fc2,y_): #第七层 输出层 #softmax y_conv = tf.nn.softmax(fc2) labels=tf.one_hot(y_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y_conv, labels =labels)) self.cost = loss return self.cost def lenet_optimer(self,loss): train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_optimizer #计算softmax交叉熵损失函数 def softmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,self.weights[‘fc2‘].get_shape().as_list()[1]) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = predicts, labels =labels)) self.cost= loss return self.cost #梯度下降 def optimer(self,loss,lr=0.01): train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_optimizer def train(): image,label=read_and_decode("./train.tfrecords") batch_image,batch_label=get_batch(image,label,batch_size=30,crop_size=28) #建立网络,训练所用 x = tf.placeholder("float",shape=[None,28,28,3],name=‘x-input‘) y_ = tf.placeholder("int32",shape=[None]) keep_prob = tf.placeholder(tf.float32) net=network() inf = net.lenet(x,keep_prob) loss=net.lenet_loss(inf,y_) #计算loss opti=net.optimer(loss) #梯度下降 correct_prediction = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),batch_label) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) init=tf.global_variables_initializer() with tf.Session() as session: with tf.device("/gpu:0"): session.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) max_iter=10000 iter=0 if os.path.exists(os.path.join("model",‘model.ckpt‘)) is True: tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",‘model.ckpt‘)) while iter<max_iter: #loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_image,batch_label,inf]) b_batch_image,b_batch_label = session.run([batch_image,batch_label]) loss_np,_=session.run([loss,opti],feed_dict={x:b_batch_image,y_:b_batch_label,keep_prob:0.6}) if iter%50==0: print ‘trainloss:‘,loss_np if iter%500==0: #accuracy_np = session.run([accuracy]) accuracy_np = session.run([accuracy],feed_dict={x:b_batch_image,y_:b_batch_label,keep_prob:1.0}) print ‘xxxxxxxxxxxxxxxxxxxxxx‘,accuracy_np iter+=1 coord.request_stop()#queue需要关闭,否则报错 coord.join(threads) if __name__ == ‘__main__‘: train()