码迷,mamicode.com
首页 > 编程语言 > 详细

Floyd-Warshall 算法-- 最短路径(适合节点密集的图)

时间:2018-02-06 20:30:17      阅读:206      评论:0      收藏:0      [点我收藏+]

标签:lock   idt   wiki   inf   https   blog   stat   分享   enter   

?由于此算法时间复杂度为O(V3)。大多数情况下不如迪杰斯特拉算法的技术分享图片。迪杰斯特拉算法适合于节点疏散的图。

?演示样例图例如以下:

?

?技术分享图片


Step 1 创建节点与边的最短路径结果表(直接可达关系)。数值表示距离。INF表示不可达

?

1

2

3

4

1

0

8

INF

1

2

INF

0

1

INF

3

4

INF

0

INF

4

INF

2

9

0

Step2 找出全部经过1的路径。更新两点间的最短路径

经过1的路径即全部入度和出度路径的组合,总数为入度×出度:

?

?技术分享图片

经过1路径为:

第一条,3-1-2

眼下MIN(3->2)为INF,而MIN(3->1->2)=4+8=12 因此MIN(3->2)为12由于2有更新,故要递归更新全部从3到2可达点的最短路径。而2可达点仅仅有3,MIN(3->3)为0,因此不须要更新。

第二条,3-1-4

眼下MIN(3->4)为INF,而MIN(3->1->4)=4+1=5,因此MIN(3->4)为5,由于4有更新,故要递归更新全部从3到4的全部可达点的最短路径,而4的可达点为3和2:

MIN(3->3)=0,MIN(3->2)=MIN(3->1->2)=12? > MIN(3->1->4->2)= 7。因此MIN(3->2)=7

找出全部经过1路径的结果为:

?

?

?

?

1

2

3

4

1

0

8

INF

1

2

INF

0

1

INF

3

4

7

0

5

4

INF

2

9

0

Step3 找出全部经过2的路径

?

技术分享图片

第1条,1->2->3

由于MIN(1->3)为INF,而MIN(1->2->3)为9。因此MIN(1->3)为9,由于3有更新,所以须要递归更新全部从1到3可达点的最短路径,由于3的可达点为1,而MIN(1->1)不须要更新,为0。如今看第二条路径:

第二条。4->2->3

因此MIN(4->3)为9,而MIN(4->2->3)为3。因此MIN(4->3)=3,由于3有更新,须要递归更新从4到3可达点的最短路径,由于3的可达点为1,而MIN(4->1)为INF,MIN(4->2->3->1)为7。因此MIN(4->1)为7。由于1有更新,继续递归,1的可达点为4和2,MIN(4->4)保持0;眼下MIN(4->2)为2,而MIN(4->2->3->1->2)=2+1+4+8=15大于2。因此不须要更新。

找出全部经过2的路径后,结果为:

?

1

2

3

4

1

0

8

9

1

2

INF

0

1

INF

3

4

7

0

5

4

7

2

3

0

Step4 找出全部经过3的路径

技术分享图片

第1条。4->3->1

MIN(4->1)为7。而MIN(4->3->1)为13。因此不须要更新

第二条,2->3->1

由于MIN(2->1)为INF,而MIN(2->3->1)为5。因此须要更新MIN(2->1)为5

由于更新了1,因此须要更新全部从2到1可达点的路径,1的可达点为4和2,MIN(2->2)不须要更新;眼下MIN(2->4)为INF。而MIN(2->3->1->4)为6。因此MIN(2->4)为6。由于更新了4,因此须要递归更新从2到4可达点的路径,4可达点为2和3,MIN(2->2)为0;MIN(2->3)为1小于MIN(2->3->1->4->3)=1+4+1+9=15。故也不须要更新。

所以经过这一步,结果表为:

?

?

?

?

1

2

3

4

1

0

8

9

1

2

5

0

1

6

3

4

7

0

5

4

7

2

3

0

最后,找出经过4的路径。

?

技术分享图片

第一条。1->4->2

MIN(1->2)为8,而MIN(1->4->2)为3,因此MIN(1->2)更新为3,由于更新了2。故须要更新全部从1到2可达点的最短路径,2的可达点为3。MIN(1->3)眼下为9。而MIN(1->4->2->3)为4,因此MIN(1->3)更新为4。由于更新了3。故递归更新全部从1到3可达点的最短路径,3的可达点为1,而MIN(1->1)不须要更新保持为0。

第二条,1->4->3

MIN(1->3)为4,而MIN(1->4->3)为10。因此不须要更新。

所以终于结果为:

?

1

2

3

4

1

0

3

4

1

2

5

0

1

6

3

4

7

0

5

4

7

2

3

0

?

Floyd-Warshall 算法-- 最短路径(适合节点密集的图)

标签:lock   idt   wiki   inf   https   blog   stat   分享   enter   

原文地址:https://www.cnblogs.com/zhchoutai/p/8423504.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!