本文在上篇的基础上利用lenet进行多标签分类。五个分类标准,每个标准分两类。实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下。
#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) #返回文件名和文件 features = tf.parse_single_example(serialized_example, features={ ‘label1‘: tf.FixedLenFeature([], tf.int64), ‘label2‘: tf.FixedLenFeature([], tf.int64), ‘label3‘: tf.FixedLenFeature([], tf.int64), ‘label4‘: tf.FixedLenFeature([], tf.int64), ‘label5‘: tf.FixedLenFeature([], tf.int64), ‘img_raw‘ : tf.FixedLenFeature([], tf.string), }) img = tf.decode_raw(features[‘img_raw‘], tf.uint8) img = tf.reshape(img, [227, 227, 3]) img = (tf.cast(img, tf.float32) * (1. / 255) - 0.5)*2 label1 = tf.cast(features[‘label1‘], tf.int32) label2 = tf.cast(features[‘label2‘], tf.int32) label3 = tf.cast(features[‘label3‘], tf.int32) label4 = tf.cast(features[‘label4‘], tf.int32) label5 = tf.cast(features[‘label5‘], tf.int32) #print img,label return img, label1,label2,label3,label4,label5 def get_batch(image, label1,label2,label3,label4,label5, batch_size,crop_size): #数据扩充变换 distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪 distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转 distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化 distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化 #生成batch #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大 #保证数据打的足够乱 images, label1_batch,label2_batch,label3_batch,label4_batch,label5_batch = tf.train.shuffle_batch([distorted_image, label1,label2,label3,label4,label5],batch_size=batch_size, num_threads=1,capacity=20000,min_after_dequeue=1000) return images, label1_batch,label2_batch,label3_batch,label4_batch,label5_batch class network(object): def lenet(self,images,keep_prob): ‘‘‘ 根据tensorflow中的conv2d函数,我们先定义几个基本符号 输入矩阵 W×W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样,不多解释。 filter矩阵 F×F,卷积核 stride值 S,步长 输出宽高为 new_height、new_width 在Tensorflow中对padding定义了两种取值:VALID、SAME。下面分别就这两种定义进行解释说明。 VALID new_height = new_width = (W – F + 1) / S #结果向上取整 SAME new_height = new_width = W / S #结果向上取整 ‘‘‘ images = tf.reshape(images,shape=[-1,32,32,3]) #images = (tf.cast(images,tf.float32)/255.0-0.5)*2 #第一层,卷积层 32,32,3--->5,5,3,6--->28,28,6 #卷积核大小为5*5 输入层深度为3即三通道图像 卷积核深度为6即卷积核的个数 conv1_weights = tf.get_variable("conv1_weights",[5,5,3,6],initializer = tf.truncated_normal_initializer(stddev=0.1)) conv1_biases = tf.get_variable("conv1_biases",[6],initializer = tf.constant_initializer(0.0)) #移动步长为1 不使用全0填充 conv1 = tf.nn.conv2d(images,conv1_weights,strides=[1,1,1,1],padding=‘VALID‘) #激活函数Relu去线性化 relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases)) #第二层 最大池化层 28,28,6--->1,2,2,1--->14,14,6 #池化层过滤器大小为2*2 移动步长为2 使用全0填充 pool1 = tf.nn.max_pool(relu1, ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #第三层 卷积层 14,14,6--->5,5,6,16--->10,10,16 #卷积核大小为5*5 当前层深度为6 卷积核的深度为16 conv2_weights = tf.get_variable("conv_weights",[5,5,6,16],initializer = tf.truncated_normal_initializer(stddev=0.1)) conv2_biases = tf.get_variable("conv2_biases",[16],initializer = tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding=‘VALID‘) #移动步长为1 不使用全0填充 relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases)) #第四层 最大池化层 10,10,16--->1,2,2,1--->5,5,16 #池化层过滤器大小为2*2 移动步长为2 使用全0填充 pool2 = tf.nn.max_pool(relu2,ksize = [1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #第五层 全连接层 fc1_weights = tf.get_variable("fc1_weights",[5*5*16,1024],initializer = tf.truncated_normal_initializer(stddev=0.1)) fc1_biases = tf.get_variable("fc1_biases",[1024],initializer = tf.constant_initializer(0.1)) #[1,1024] pool2_vector = tf.reshape(pool2,[-1,5*5*16]) #特征向量扁平化 原始的每一张图变成了一行9×9*64列的向量 fc1 = tf.nn.relu(tf.matmul(pool2_vector,fc1_weights)+fc1_biases) #为了减少过拟合 加入dropout层 fc1_dropout = tf.nn.dropout(fc1,keep_prob) #第六层 全连接层 #神经元节点数为1024 分类节点2 fc2_weights = tf.get_variable("fc2_weights",[1024,2],initializer=tf.truncated_normal_initializer(stddev=0.1)) fc2_biases = tf.get_variable("fc2_biases",[2],initializer = tf.constant_initializer(0.1)) fc2 = tf.matmul(fc1_dropout,fc2_weights) + fc2_biases return fc2 def lenet_loss(self,fc2,y1_,y2_,y3_,y4_,y5_): #第七层 输出层 #softmax y1_conv = tf.nn.softmax(fc2) labels1=tf.one_hot(y1_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y1_conv, labels =labels1)) y2_conv = tf.nn.softmax(fc2) labels2=tf.one_hot(y2_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y2_conv, labels =labels2)) y3_conv = tf.nn.softmax(fc2) labels3=tf.one_hot(y3_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y3_conv, labels =labels3)) y4_conv = tf.nn.softmax(fc2) labels4=tf.one_hot(y4_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss4 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y4_conv, labels =labels4)) y5_conv = tf.nn.softmax(fc2) labels5=tf.one_hot(y5_,2) #定义交叉熵损失函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1])) loss5 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y5_conv, labels =labels5)) loss = (loss1 + loss2 + loss3 + loss4 + loss5)/5 self.cost = loss return self.cost def lenet_optimer(self,loss): train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_optimizer def train(): image,label1,label2,label3,label4,label5=read_and_decode("./train.tfrecords") testimage,testlabel1,testlabel2,testlabel3,testlabel4,testlabel5=read_and_decode("./test.tfrecords") batch_image,batch_label1,batch_label2,batch_label3,batch_label4,batch_label5=get_batch(image,label1,label2,label3,label4,label5,batch_size=30,crop_size=32) testbatch_image,testbatch_label1,testbatch_label2,testbatch_label3,testbatch_label4,testbatch_label5=get_batch(testimage,testlabel1,testlabel2,testlabel3,testlabel4,testlabel5,batch_size=30,crop_size=32) #测试数据集 #建立网络,训练所用 x = tf.placeholder("float",shape=[None,32,32,3],name=‘x-input‘) y1_ = tf.placeholder("int32",shape=[None]) y2_ = tf.placeholder("int32",shape=[None]) y3_ = tf.placeholder("int32",shape=[None]) y4_ = tf.placeholder("int32",shape=[None]) y5_ = tf.placeholder("int32",shape=[None]) keep_prob = tf.placeholder(tf.float32) net=network() #inf=net.buildnet(batch_image) inf = net.lenet(x,keep_prob) loss=net.lenet_loss(inf,y1_,y2_,y3_,y4_,y5_) #计算loss opti=net.optimer(loss) #梯度下降 correct_prediction1 = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),testbatch_label1) accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1,tf.float32)) correct_prediction2 = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),testbatch_label2) accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2,tf.float32)) correct_prediction3 = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),testbatch_label3) accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3,tf.float32)) correct_prediction4 = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),testbatch_label4) accuracy4 = tf.reduce_mean(tf.cast(correct_prediction4,tf.float32)) correct_prediction5 = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),testbatch_label5) accuracy5 = tf.reduce_mean(tf.cast(correct_prediction5,tf.float32)) accuracy = (accuracy1+accuracy2+accuracy3+accuracy4+accuracy5)/5 init=tf.global_variables_initializer() with tf.Session() as session: with tf.device("/gpu:0"): session.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) max_iter=10000 iter=0 if os.path.exists(os.path.join("model",‘model.ckpt‘)) is True: tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",‘model.ckpt‘)) while iter<max_iter: #loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_image,batch_label,inf]) b_batch_image,b_batch_label1,b_batch_label2,b_batch_label3,b_batch_label4,b_batch_label5 = session.run([batch_image,batch_label1,batch_label2,batch_label3,batch_label4,batch_label5]) testb_batch_image,testb_batch_label1,testb_batch_label2,testb_batch_label3,testb_batch_label4,testb_batch_label5 = session.run([testbatch_image,testbatch_label1,testbatch_label2,testbatch_label3,testbatch_label4,testbatch_label5]) loss_np,_=session.run([loss,opti],feed_dict={x:b_batch_image,y1_:b_batch_label1,y2_:b_batch_label2,y3_:b_batch_label3,y4_:b_batch_label4,y5_:b_batch_label5,keep_prob:0.6}) if iter%50==0: print ‘trainloss:‘,loss_np if iter%500==0: #accuracy_np = session.run([accuracy]) accuracy_np = session.run([accuracy],feed_dict={x:testb_batch_image,y1_:testb_batch_label1,y2_:testb_batch_label2,y3_:testb_batch_label3,y4_:testb_batch_label4,y5_:testb_batch_label5,keep_prob:1.0}) print ‘测试集准确率为:‘,accuracy_np iter+=1 coord.request_stop()#queue需要关闭,否则报错 coord.join(threads) if __name__ == ‘__main__‘: train()