这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距离来得到最接近的答案。
1 import os 2 import operator 3 from numpy import * 4 5 def classify0(inX, dataSet, labels, k): 6 dataSetSize = dataSet.shape[0] 7 diffMat = tile(inX, (dataSetSize,1)) - dataSet #统一矩阵,实现加减 8 sqDiffMat = diffMat**2 9 sqDistances = sqDiffMat.sum(axis=1) #进行累加,axis=0是按列,axis=1是按行 10 distances = sqDistances**0.5 #开根号 11 sortedDistIndicies = distances.argsort() #按升序进行排序,返回原下标 12 classCount = {} 13 for i in range(k): 14 voteIlabel = labels[sortedDistIndicies[i]] 15 classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #get是字典中的方法,前面是要获得的值,后面是若该值不存在时的默认值 16 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) 17 return sortedClassCount[0][0] 18 19 20 def img2vector(filename): 21 f = open(filename) 22 returnVect = zeros((1,1024)) 23 for i in range(32): 24 line = f.readline() 25 for j in range(32): 26 returnVect[0,i*32+j] = int(line[j]) 27 return returnVect 28 29 30 def handwritingClassTest(): 31 fileList = os.listdir(‘trainingDigits‘) 32 m = len(fileList) 33 traingMat = zeros((m, 1024)) 34 hwlabels = [] 35 for i in range(m): 36 fileName = fileList[i] 37 prefix = fileName.split(‘.‘)[0] 38 number = int(prefix.split(‘_‘)[0]) 39 hwlabels.append(number) 40 traingMat[i,:] = img2vector(‘trainingDigits/%s‘ %fileName) 41 testFileList = os.listdir(‘testDigits‘) 42 m = len(testFileList) 43 errorNum = 0.0 44 for i in range(m): 45 testFileName = testFileList[i] 46 prefix = testFileList[i].split(‘.‘)[0] 47 realNumber = int(prefix.split(‘_‘)[0]) 48 testMat = img2vector(‘testDigits/%s‘ %testFileName) 49 testResult = classify0(testMat, traingMat, hwlabels, 3) 50 if testResult != realNumber: 51 errorNum += 1 52 print(‘The classifier came back with: %d, the real answer is: %d‘ %(testResult, realNumber)) 53 print(‘错误率为%f‘ %(errorNum/float(m))) 54 55 if __name__ == ‘__main__‘: 56 handwritingClassTest()