题目大意:给出一棵无根树。开始的时候你在1号节点。有两种操作:1.求你的位置到x的位置的距离,然后你走到x点。2.把第x条边边权改成y。
思路:裸地树链剖分。当然正解不是树链剖分,是DFS序+树状数组。没时间想太多就写了个链剖。
CODE:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 200010
#define LEFT (pos << 1)
#define RIGHT (pos << 1|1)
using namespace std;
struct Edge{
int x,y,len;
Edge(int _x,int _y,int _len)
:x(_x),y(_y),len(_len) {}
Edge() {}
}edge[MAX];
int points,asks,now;
int head[MAX],total;
int next[MAX],aim[MAX],length[MAX];
int src[MAX];
int son[MAX],father[MAX],deep[MAX];
int top[MAX],pos[MAX],cnt;
int tree[MAX << 2];
inline void Add(int x,int y,int len);
int PreDFS(int x,int last);
void DFS(int x,int last,int root);
void BuildTree(int l,int r,int pos);
inline int Ask(int x,int y);
int Ask(int l,int r,int x,int y,int pos);
void Modify(int l,int r,int x,int pos,int num);
int main()
{
cin >> points >> asks >> now;
for(int x,y,z,i = 1;i < points; ++i) {
scanf("%d%d%d",&x,&y,&z);
edge[i] = Edge(x,y,z);
Add(x,y,z),Add(y,x,z);
}
PreDFS(1,0);
DFS(1,0,1);
for(int i = 1;i <= total; ++i) {
int temp = deep[edge[i].x] > deep[edge[i].y] ? edge[i].x:edge[i].y;
src[pos[temp]] = edge[i].len;
}
BuildTree(1,cnt,1);
for(int flag,x,y,i = 1;i <= asks; ++i) {
scanf("%d%d",&flag,&x);
if(!flag) {
printf("%d\n",Ask(now,x));
now = x;
}
else {
scanf("%d",&y);
int temp = deep[edge[x].x] > deep[edge[x].y] ? edge[x].x:edge[x].y;
Modify(1,cnt,pos[temp],1,y);
}
}
return 0;
}
inline void Add(int x,int y,int len)
{
next[++total] = head[x];
aim[total] = y;
length[total] = len;
head[x] = total;
}
int PreDFS(int x,int last)
{
deep[x] = deep[last] + 1;
father[x] = last;
int re = 1,_max = 0;
for(int i = head[x];i;i = next[i]) {
if(aim[i] == last) continue;
int temp = PreDFS(aim[i],x);
if(temp > _max) temp = _max,son[x] = aim[i];
re += temp;
}
return re;
}
void DFS(int x,int last,int root)
{
pos[x] = ++cnt;
top[x] = root;
if(son[x]) DFS(son[x],x,root);
for(int i = head[x];i;i = next[i]) {
if(aim[i] == last || aim[i] == son[x]) continue;
DFS(aim[i],x,aim[i]);
}
}
void BuildTree(int l,int r,int pos)
{
if(l == r) {
tree[pos] = src[l];
return ;
}
int mid = (l + r) >> 1;
BuildTree(l,mid,LEFT);
BuildTree(mid + 1,r,RIGHT);
tree[pos] = tree[LEFT] + tree[RIGHT];
}
inline int Ask(int x,int y)
{
int re = 0;
while(top[x] != top[y]) {
if(deep[top[x]] < deep[top[y]])
swap(x,y);
re += Ask(1,cnt,pos[top[x]],pos[x],1);
x= father[top[x]];
}
if(x == y) return re;
if(deep[x] < deep[y])
swap(x,y);
re += Ask(1,cnt,pos[y] + 1,pos[x],1);
return re;
}
int Ask(int l,int r,int x,int y,int pos)
{
if(l == x && r == y) return tree[pos];
int mid = (l + r) >> 1;
if(y <= mid) return Ask(l,mid,x,y,LEFT);
if(x > mid) return Ask(mid + 1,r,x,y,RIGHT);
int left = Ask(l,mid,x,mid,LEFT);
int right = Ask(mid + 1,r,mid + 1,y,RIGHT);
return left + right;
}
void Modify(int l,int r,int x,int pos,int num)
{
if(l == r) {
tree[pos] = num;
return ;
}
int mid = (l + r) >> 1;
if(x <= mid) Modify(l,mid,x,LEFT,num);
else Modify(mid + 1,r,x,RIGHT,num);
tree[pos] = tree[LEFT] + tree[RIGHT];
}原文地址:http://blog.csdn.net/jiangyuze831/article/details/39429711