spark之JDBC开发(连接数据库测试)
以下操作属于本地模式操作:
1、在Eclipse4.5中建立工程RDDToJDBC,并创建一个文件夹lib用于放置第三方驱动包
[hadoop@CloudDeskTop software]$ cd /project/RDDToJDBC/
[hadoop@CloudDeskTop RDDToJDBC]$ mkdir -p lib
[hadoop@CloudDeskTop RDDToJDBC]$ ls
bin lib src
2、添加必要的环境
2.1、将MySql的jar包拷贝到工程目录RDDToJDBC下的lib目录下
[hadoop@CloudDeskTop software]$ cp -a /software/hive-1.2.2/lib/mysql-connector-java-3.0.17-ga-bin.jar /project/RDDToJDBC/lib/
2.1、将Spark的开发库Spark2.1.1-All追加到RDDToJDBC工程的classpath路径中去(可以通过添加用户库的方式来解决);Spark2.1.1-All中包含哪些包,请点击此处
3、准备spark的源数据:
[hadoop@CloudDeskTop spark]$ cd /home/hadoop/test/jdbc/ [hadoop@CloudDeskTop jdbc]$ ls myuser testJDBC.txt [hadoop@CloudDeskTop jdbc]$ cat myuser lisi 123456 165 1998-9-9 lisan 123ss 187 2009-10-19 wangwu 123qqwe 177 1990-8-3
4、开发源码:
package com.mmzs.bigdata.spark.core.local; import java.io.File; import java.sql.Connection; import java.sql.Date; import java.sql.DriverManager; import java.sql.PreparedStatement; import java.sql.SQLException; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple4; public class TestMain { /** * 全局计数器 */ private static int count; /** * 数据库连接 */ private static Connection conn; /** * 预编译语句 */ private static PreparedStatement pstat; private static final File OUT_PATH=new File("/home/hadoop/test/jdbc/output"); static{ delDir(OUT_PATH); try { String sql="insert into t_user(userName,passWord,height,birthday) values(?,?,?,?)"; String url="jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=utf8"; Class.forName("com.mysql.jdbc.Driver"); conn=DriverManager.getConnection(url, "root", "123456"); pstat=conn.prepareStatement(sql); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (SQLException e) { e.printStackTrace(); } } /** * 删除任何目录或文件 * @param f */ private static void delDir(File f){ if(!f.exists())return; if(f.isFile()||(f.isDirectory()&&f.listFiles().length==0)){ f.delete(); return; } File[] files=f.listFiles(); for(File fp:files)delDir(fp); f.delete(); } private static void batchSave(Tuple4<String,String,Double,Date> line,boolean isOver){ try{ pstat.setString(1, line._1()); pstat.setString(2, line._2()); pstat.setDouble(3, line._3()); pstat.setDate(4, line._4()); if(isOver){//如果结束了循环则直接写磁盘 pstat.addBatch(); pstat.executeBatch(); pstat.clearBatch(); pstat.clearParameters(); }else{ //如果没有结束则将sql语句添加到批处理中去 pstat.addBatch(); count++; if(count%100==0){ //如果满一个批次就提交一次批处理操作 pstat.executeBatch(); pstat.clearBatch(); pstat.clearParameters(); } } }catch(SQLException e){ e.printStackTrace(); } } /** * 将RDD集合中的数据存储到关系数据库MYSql中去 * @param statResRDD */ private static void saveToDB(JavaRDD<String> statResRDD){ final long rddNum=statResRDD.count(); statResRDD.foreach(new VoidFunction<String>(){ private long count=0; @Override public void call(String line) throws Exception { String[] fields=line.split(" "); String userName=fields[1]; String passWord=fields[2]; Double height=Double.parseDouble(fields[3]); Date birthday=Date.valueOf(fields[4]); Tuple4<String,String,Double,Date> fieldTuple=new Tuple4<String,String,Double,Date>(userName,passWord,height,birthday); if(++count<rddNum){ batchSave(fieldTuple,false); }else{ batchSave(fieldTuple,true); } } }); try{ if(null!=pstat)pstat.close(); if(null!=conn)conn.close(); }catch(SQLException e){ e.printStackTrace(); } } public static void main(String[] args) { SparkConf conf=new SparkConf(); conf.setAppName("Java Spark local"); conf.setMaster("local"); //根据Spark配置生成Spark上下文 JavaSparkContext jsc=new JavaSparkContext(conf); //读取本地的文本文件成内存中的RDD集合对象 JavaRDD<String> lineRdd=jsc.textFile("/home/hadoop/test/jdbc/myuser"); //...........其它转换或统计操作................ //存储统计之后的结果到磁盘文件中去 //lineRdd.saveAsTextFile("/home/hadoop/test/jdbc/output"); saveToDB(lineRdd); //关闭Spark上下文 jsc.close(); } }
5、初始化MySql数据库服务(节点在192.168.154.134上)
A、启动MySql数据库服务
[root@DB03 ~]# cd /software/mysql-5.5.32/multi-data/3306/ [root@DB03 3306]# ls data my.cnf my.cnf.bak mysqld [root@DB03 3306]# ./mysqld start Starting MySQL...
B、建立test库
[root@CloudDeskTop 3306]# cd /software/mysql-5.5.32/bin/ [root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "show databases;" +--------------------+ | Database | +--------------------+ | information_schema | | mysql | | performance_schema | +--------------------+ [root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "create database test character set utf8;" [root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "show databases;" +--------------------+ | Database | +--------------------+ | information_schema | | mysql | | performance_schema | | test | +--------------------+
C、建立myuser表:
[root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "create table if not exists test.myuser(username varchar(30),password varchar(30),height double(10,1),birthday date)engine=myisam charset=utf8;"
[root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "use test;show tables;" +-------------------+ | Tables_in_test | +-------------------+ | myuser | +-------------------+ [root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "use test;desc test.myuser;" +-------------+--------------+-------+----+---------+-------+ | Field | Type | Null | Key| Default | Extra | +-------------+--------------+-------+----+---------+-------+ | username | varchar(30) | YES | | NULL | | | password | varchar(30) | YES | | NULL | | | height | double(10,1) | YES | | NULL | NULL | | birthday | date | YES | | NULL | | +-------------+--------------+-------+----+---------+-------+ #目前数据库表中还没有数据 [root@CloudDeskTop bin]# ./mysql -h192.168.154.134 -P3306 -uroot -p123456 -e "select * from test.myuser;"
6、运行并查看数据库中结果
6.1、在Eclipse4.5中直接运行Spark代码,观察Eclipse控制台输出
6.2、检查在关系数据库MySql中是否已经存在数据