1. volatile 关键字与内存可见性
内存可见性(Memory Visibility)是指当某个线程正在使用对象状态而另一个线程在同时修改该状态,需要确保当一个线程修改了对象状态后,其他线程能够看到发生的状态变化。
可见性错误是指当读操作与写操作在不同的线程中执行时,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情。
定义线程类ThreadDemo,功能是将boolean型变量flag的值修改
class ThreadDemo implements Runnable { private volatile boolean flag = false; @Override public void run() { try { Thread.sleep(200); } catch (InterruptedException e) { } flag = true; System.out.println("flag=" + isFlag()); } public boolean isFlag() { return flag; } public void setFlag(boolean flag) { this.flag = flag; } }
测试:线程1修改ThreadDemo类中 flag的值(由false修改为true),线程main方法判断 flag的值,当为true时输出信息,并停止
public class TestVolatile { //线程main方法判断boolean值,当为true时输出“------------” 并停止线程 public static void main(String[] args) { ThreadDemo td = new ThreadDemo(); //线程1为ThreadDemo的run方法,将boolean值由false改为true new Thread(td).start(); while(true){ if(td.isFlag()){ System.out.println("------------------"); break; } } } }
运行如下:
即由于可见性错误导致线程main方法读取到主存中的flag值并不是线程1修改后的值(读取操作发生在线程1将flag值写入主存之前)。
解决方法:
(1)使用同步锁synchronized,让线程main重复的到主存中读取数据,但是当多线程操作时,效率很低
synchronized (td) { if(td.isFlag()){ System.out.println("------------------"); break; } }
(2)使用volatile 变量,用来确保将变量的更新操作通知到其他线程
private volatile boolean flag = false;
可以将 volatile 看做一个轻量级的锁,但是又与锁有些不同:
- 对于多线程,不是一种互斥关系
- 不能保证变量状态的“原子性操作”
2. 原子变量与 CAS 算法
以 i++为例,i++操作实际上分为三个步骤
//i++ 的原子性问题: int i = 10; i = i++; //10 //i++ 的操作实际上分为三个步骤“读-改-写” int temp = i; i = i + 1; i = temp;
测试如下:
public class TestAtomicDemo { public static void main(String[] args) { AtomicDemo ad = new AtomicDemo(); //创建10个线程对serialNumber值进行增加操作 for (int i = 0; i < 10; i++) { new Thread(ad).start(); } } } class AtomicDemo implements Runnable{ //声明volatile变量 private volatile int serialNumber = 0; @Override public void run() { try { Thread.sleep(200); } catch (InterruptedException e) { } System.out.println(getSerialNumber()); } //对变量进行i++操作 public int getSerialNumber(){ return serialNumber++; } }
可能会出现如下结果:
原因为 volatile只能保证内存可见性,但是线程1和线程2中进行的 i++操作却分好几个步骤,即不能保证变量状态的“原子性操作”。
解决方法:
使用原子变量(在 java.util.concurrent.atomic 包下)
// private volatile int serialNumber = 0; private AtomicInteger serialNumber = new AtomicInteger(0); public int getSerialNumber(){ // return serialNumber++; return serialNumber.getAndIncrement(); }
以 AtomicInteger分析原子变量的实现
(1)volatile 保证内存可见性
(2)CAS(Compare-And-Swap) 算法保证数据变量的原子性
CAS (Compare-And-Swap) 是一种硬件对并发的支持,针对多处理器操作而设计的处理器中的一种特殊指令,用于管理对共享数据的并发访问。
CAS 是一种无锁的非阻塞算法的实现。
CAS 包含了 3 个操作值:
- 需要读写的内存值 V
- 进行比较的值 A
- 拟写入的新值 B
当且仅当 V 的值等于 A 时,CAS 通过原子方式用新值 B 来更新 V 的值,否则不会执行任何操作。
可通过源码查看sun.misc.Unsafe.class中的getAndAddInt方法实现来理解CAS算法
public final int getAndAddInt(Object paramObject, long paramLong, int paramInt) { int i; do { i = getIntVolatile(paramObject, paramLong); } while (!compareAndSwapInt(paramObject, paramLong, i, i + paramInt)); return i; }
3. 模拟CAS算法
/* * 模拟 CAS 算法 */ public class TestCompareAndSwap { public static void main(String[] args) { final CompareAndSwap cas = new CompareAndSwap(); for (int i = 0; i < 10; i++) { new Thread(new Runnable() { @Override public void run() { int expectedValue = cas.get(); boolean b = cas.compareAndSet(expectedValue, (int)(Math.random() * 101)); System.out.println(b); } }).start(); } } } class CompareAndSwap{ private int value; //获取内存值 public synchronized int get(){ return value; } //比较 public synchronized int compareAndSwap(int expectedValue, int newValue){ int oldValue = value; if(oldValue == expectedValue){ this.value = newValue; } return oldValue; } //设置 public synchronized boolean compareAndSet(int expectedValue, int newValue){ return expectedValue == compareAndSwap(expectedValue, newValue); } }
4. 同步容器类 ConcurrentHashMap
Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器的性能。
ConcurrentHashMap 同步容器类是Java 5 增加的一个线程安全的哈希表。对与多线程的操作,介于 HashMap 与 Hashtable 之间。内部采用“锁分段”机制(可理解为“并行”)替代 Hashtable 的独占锁(相当于“串行”),进而提高性能。
注意:jdk1.8之后ConcurrentHashMap底层采用的 CAS算法 取代“锁分段”机制。
此包还提供了设计用于多线程上下文中的 Collection 实现:
ConcurrentHashMap、ConcurrentSkipListMap、ConcurrentSkipListSet、CopyOnWriteArrayList 和 CopyOnWriteArraySet。
- 当期望许多线程访问一个给定 collection 时,ConcurrentHashMap 通常优于同步的 HashMap,ConcurrentSkipListMap 通常优于同步的 TreeMap。
- 当期望的读数和遍历远远大于列表的更新数时,CopyOnWriteArrayList 优于同步的 ArrayList。
/* * CopyOnWriteArrayList/CopyOnWriteArraySet : “写入并复制” * 注意:添加操作多时,效率低,因为每次添加时都会进行复制,开销非常的大。并发迭代操作多时可以选择。 */ public class TestCopyOnWriteArrayList { public static void main(String[] args) { HelloThread ht = new HelloThread(); for (int i = 0; i < 10; i++) { new Thread(ht).start(); } } } class HelloThread implements Runnable{ // 使用ArrayList,报错java.util.ConcurrentModificationException // private static List<String> list = Collections.synchronizedList(new ArrayList<String>()); private static CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>(); static{ list.add("AA"); list.add("BB"); list.add("CC"); } @Override public void run() { Iterator<String> it = list.iterator(); while(it.hasNext()){ //迭代和add方法操作同一个数据源 System.out.println(it.next()); list.add("AA"); } } }
5. CountDownLatch 闭锁
Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器的性能。
CountDownLatch 一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
闭锁可以延迟线程的进度直到其到达终止状态,闭锁可以用来确保某些活动直到其他活动都完成才继续执行:
- 确保某个计算在其需要的所有资源都被初始化之后才继续执行;
- 确保某个服务在其依赖的所有其他服务都已经启动之后才启动;
- 等待直到某个操作所有参与者都准备就绪再继续执行。
如下:要求在创建的5个线程都执行完毕之后,再调用线程main方法输出耗费时间,使用wait,notify和notifyAll方法也可实现,但JDK不推荐。这里使用CountDownLatch。
/* * CountDownLatch :闭锁,在完成某些运算时,只有其他所有线程的运算全部完成,当前运算才继续执行 */ public class TestCountDownLatch { public static void main(String[] args) { //CountDownLatch的构造函数接收一个int类型的参数作为计数器,如果你想等待N个点完成,这里就传入N。 final CountDownLatch latch = new CountDownLatch(5); LatchDemo ld = new LatchDemo(latch); long start = System.currentTimeMillis(); for (int i = 0; i < 5; i++) { new Thread(ld).start(); } try { //阻塞当前线程,直到N变成零。 latch.await(); } catch (InterruptedException e) { } long end = System.currentTimeMillis(); System.out.println("耗费时间为:" + (end - start)); } } class LatchDemo implements Runnable { private CountDownLatch latch; public LatchDemo(CountDownLatch latch) { this.latch = latch; } @Override public void run() { try { for (int i = 0; i < 10; i++) { if (i % 2 == 0) { System.out.println(i); } } } finally { //计数器减一 latch.countDown(); } } }
结果:
6. 创建执行线程的方式三:实现 Callable 接口
Thread类和Runnable接口都不允许声明检查型异常,也不能定义返回值。Thread类和Runnable接口都不允许声明检查型异常,也不能定义返回值。
不能声明抛出检查型异常这个问题比较麻烦。public void run()方法契约意味着你必须捕获并处理检查型异常。即使你小心地保存了异常信息(在捕获异常时)以便稍后检查,但也不能保证这个类(Runnable对象)的所有使用者都读取异常信息。你也可以修改Runnable实现的getter,让它们都能抛出任务执行中的异常。但这种方法除了繁琐也不是十分安全可靠,你不能强迫使用者调用这些方法,程序员很可能会调用join()方法等待线程结束然后就不管了。
Java 5.0 在 java.util.concurrent 提供了一个新的创建执行线程的方式:Callable 接口。Callable接口定义了方法public T call() throws Exception。我们可以在Callable实现中声明强类型的返回值,甚至是抛出异常。
Callable 需要依赖FutureTask ,FutureTask 也可以用作闭锁。
/* * 一、创建执行线程的方式三:实现 Callable 接口。 相较于实现 Runnable 接口的方式,方法可以有返回值,并且可以抛出异常。 * * 二、执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。 FutureTask 是 Future 接口的实现类 */ public class TestCallable { public static void main(String[] args) { ThreadDemo1 td = new ThreadDemo1(); //1.执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。 FutureTask<Integer> result = new FutureTask<>(td); new Thread(result).start(); //2.接收线程运算后的结果 try { Integer sum = result.get(); //FutureTask 可用于 闭锁 System.out.println(sum); System.out.println("------------------------------------"); } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); } } } class ThreadDemo1 implements Callable<Integer>{ @Override public Integer call() throws Exception { int sum = 0; for (int i = 0; i <= 100000; i++) { sum += i; } return sum; } } /*class ThreadDemo implements Runnable{ @Override public void run() { } }*/
7. 同步锁 Lock
在 Java 5.0 之前,协调共享对象的访问时可以使用的机制只有 synchronized 和 volatile 。Java 5.0 后增加了一些新的机制,但并不是一种替代内置锁的方法,而是当内置锁不适用时,作为一种可选择的高级功能。
ReentrantLock 实现了 Lock 接口,并提供了与synchronized 相同的互斥性和内存可见性。但相较于synchronized 提供了更高的处理锁的灵活性。
/* * 用于解决多线程安全问题的方式: * * synchronized:隐式锁 * 1. 同步代码块 * * 2. 同步方法 * * jdk 1.5 后: * 3. 同步锁 Lock * 注意:是一个显示锁,需要通过 lock() 方法上锁,必须通过 unlock() 方法进行释放锁 */ public class TestLock { public static void main(String[] args) { Ticket ticket = new Ticket(); new Thread(ticket, "1号窗口").start(); new Thread(ticket, "2号窗口").start(); new Thread(ticket, "3号窗口").start(); } } class Ticket implements Runnable{ private int tick = 100;
private Lock lock = new ReentrantLock();
@Override public void run() { while(true){ lock.lock(); //上锁 try{ if(tick > 0){ try { Thread.sleep(200); } catch (InterruptedException e) { } System.out.println(Thread.currentThread().getName() + " 完成售票,余票为:" + --tick); } }finally{ lock.unlock(); //释放锁 } } } }