码迷,mamicode.com
首页 > 编程语言 > 详细

Python机器学习:泰坦尼克号获救预测一

时间:2018-03-04 21:24:41      阅读:602      评论:0      收藏:0      [点我收藏+]

标签:vertica   识别   bar   效果   导入数据   逻辑回归   https   其他   get   

数据集下载地址:
视频地址:
 
 
一、项目概要
1、应用
  模式识别、数据挖掘(核心)、统计学习、计算机视觉、语言识别、自然语言处理
技术分享图片
 
2、模式、流程
  训练样本 --> 特征提取 --> 学习函数 --> 预测
技术分享图片
二、Python实践
1、应用的模块
  Numpy:科学计算库
  pandas:数据分析处理库
  Matplotlib:数据可视化库
  Scikit-learn:机器学习库
 
2、数据源处理
① 导入数据:
  
1 #coding: utf-8
2 import pandas
3 titanic = pandas.read_csv(train.csv)
② 对缺失数据的列进行填充:
1 #对于缺失的数据进行补充 median 填充中位数
2 titanic[Age] = titanic[Age].fillna(titanic[Age].median())
③ 属性转换,把某些列的字符串值转为数字项:
1 print titanic[Sex].unique()
2 titanic.loc[titanic[Sex] == male,Sex] = 0
3 titanic.loc[titanic[Sex] == female,Sex] = 1
4 
5 print titanic[Embarked].unique()
6 titanic[Embarked] = titanic[Embarked].fillna(S)
7 titanic.loc[titanic[Embarked] == S,Embarked] = 0
8 titanic.loc[titanic[Embarked] == C,Embarked] = 1
9 titanic.loc[titanic[Embarked] == Q,Embarked] = 2
 
3、建立模型
① 引入机器学习库,核心
1 from sklearn.linear_model import LinearRegression  #分类算法 线性回归
2 from sklearn.cross_validation import KFold   #交叉验证库,将测试集进行切分验证取平均值
② 实例化模型
1 predictors = [Pclass,Sex,Age,SibSp,Parch,Fare,Embarked]   #用到的特征
2 alg = LinearRegression() #线性回归模型实例化对象
3 kf = KFold(titanic.shape[0],n_folds=3,random_state=1) #将m个平均分成3份进行交叉验证
③ 把数据传入模型 预测结果
 1 predictions = []
 2 #for循环: 训练集、测试集、交叉验证
 3 for train, test in kf:
 4     #print train
 5     #print test
 6     train_predictors = (titanic[predictors].iloc[train,:]) #将predictors作为测试特征
 7     #print train_predictors
 8     train_target = titanic[Survived].iloc[train]
 9     #print train_target
10     alg.fit(train_predictors,train_target)  #构建线性模型 样本的x(训练数据) 样本的y(标签值)
11     test_prediction = alg.predict(titanic[predictors].iloc[test,:]) #预测结果值
12     predictions.append(test_prediction)
 
4、算法概率计算
1 import numpy as np
2 #使用线性回归得到的结果是在区间【0,1】上的某个值,需要将该值转换成0或1
3 predictions = np.concatenate(predictions, axis=0)
4 predictions[predictions >.5] = 1
5 predictions[predictions <=.5] = 0
6 accury = sum(predictions[predictions == titanic[Survived]]) / len(predictions) #测试准确率 进行模型评估
7 print accury #精度值
 
5、集成算法 构造多个分类树
① 构造多个分类器
1 from sklearn.linear_model import LogisticRegression #逻辑回归
2 from sklearn import cross_validation
3 alg = LogisticRegression(random_state=1)
4 scores = cross_validation.cross_val_score(alg, titanic[predictors],titanic[Survived],cv=3)
5 print scores.mean()
② 随机森林
 1 from sklearn.ensemble import RandomForestClassifier
 2 from sklearn import cross_validation
 3 predictions = [Pclass,Sex,Age,SibSp,Parch,Fare,Embarked]
 4 # Initialize our algorithm with the default paramters
 5 # random_state = 1 表示此处代码多运行几次得到的随机值都是一样的,如果不设置,两次执行的随机值是不一样的
 6 # n_estimators  指定有多少颗决策树,树的分裂的条件是:
 7 # min_samples_split 代表样本不停的分裂,某一个节点上的样本如果只有2个了 ,就不再继续分裂了
 8 # min_samples_leaf 是控制叶子节点的最小个数
 9 alg = RandomForestClassifier(random_state=1,n_estimators=100,min_samples_split=4,min_samples_leaf=2)
10 #进行交叉验证
11 kf = cross_validation.KFold(titanic.shape[0],n_folds=3,random_state=1)
12 scores = cross_validation.cross_val_score(alg,titanic[predictors],titanic[Survived],cv=kf)
13 print scores.mean()

 

6、特征提取
 1 # ## 关于特征提取问题 (非常关键)
 2 # - 尽可能多的提取特征
 3 # - 看不同特征的效果
 4 # - 特征提取是数据挖掘里很- 要的一部分
 5 # - 以上使用的特征都是数据里已经有的了,在真实的数据挖掘里我们常常没有合适的特征,需要我们自己取提取
 6 ① 把多个特征组合成一个特征
 7 titanic[Familysize] = titanic[SibSp] + titanic[Parch] #家庭总共多少人
 8 titanic[NameLength] = titanic[Name].apply(lambda x: len(x)) #名字的长度
 9 import re
10 
11 def get_title(name):
12     title_reserch = re.search(([A-Za-z]+)\.,name)
13     if title_reserch:
14         return title_reserch.group(1)
15     return ""
16 titles = titanic[Name].apply(get_title)
17 #print pandas.value_counts(titles)
18 
19 #将称号转换成数值表示
20 title_mapping = {"Mr":1,"Miss":2,"Mrs":3,"Master":4,"Dr":5,"Rev":6,"Col":7,"Major":8,"Mlle":9,"Countess":10,"Ms":11,"Lady":12,"Jonkheer":13,"Don":14,"Mme":15,"Capt":16,"Sir":17}
21 for k,v in title_mapping.items():
22     titles[titles==k] = v
23     #print (pandas.value_counts(titles))
24 titanic["titles"] = titles #添加title特征
② 进行特征选择
 1 # 进行特征选择
 2 # 特征重要性分析
 3 # 分析 不同特征对 最终结果的影响
 4 # 例如 衡量age列的重要程度时,什么也不干,得到一个错误率error1,
 5 # 加入一些噪音数据,替换原来的值(注意,此时其他列的数据不变),又得到一个一个错误率error2
 6 # 两个错误率的差值 可以体现这一个特征的重要性
 7 import numpy as np
 8 from sklearn.feature_selection import SelectKBest,f_classif#引入feature_selection看每一个特征的重要程度
 9 import matplotlib.pyplot as plt
10 
11 predictors = [Pclass,Sex,Age,SibSp,Parch,Fare,Embarked,Familysize,NameLength,titles]
12 selector = SelectKBest(f_classif,k=5)
13 selector.fit(titanic[predictors],titanic[Survived])
14 scores = -np.log10(selector.pvalues_)
③用视图的方式展示
1 plt.bar(range(len(predictors)),scores)
2 plt.xticks(range(len(predictors)),predictors,rotation=vertical)
3 plt.show()

技术分享图片

 
7、集成分类器
 1 # 在竞赛中常用的耍赖的办法:集成多种算法,取最后每种算法的平均值,来减少过拟合
 2 from sklearn.ensemble import GradientBoostingClassifier
 3 import numpy as np
 4 # GradientBoostingClassifier也是一种随机森林的算法,可以集成多个弱分类器,然后变成强分类器
 5 algorithas = [
 6         [GradientBoostingClassifier(random_state=1,n_estimators=25,max_depth=3),[Pclass,Sex,Age,SibSp,Parch,Fare,Embarked,Familysize,NameLength,titles]],
 7         [LogisticRegression(random_state=1),[Pclass,Sex,Age,SibSp,Parch,Fare,Embarked,Familysize,NameLength,titles]]
 8         ]
 9 kf = KFold(titanic.shape[0],n_folds=3,random_state=1)
10 predictions = []
11 for train, test in kf:
12    train_target = titanic[Survived].iloc[train]
13    full_test_predictions = []
14    for alg,predictors in algorithas:
15        alg.fit(titanic[predictors].iloc[train,:],train_target)
16        test_prediction = alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]
17        full_test_predictions.append(test_prediction)
18    test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2
19    test_predictions[test_predictions >.5] = 1
20    test_predictions[test_predictions <=.5] = 0
21    predictions.append(test_predictions)
22 predictions = np.concatenate(predictions,axis=0)
23 accury = sum(predictions[predictions == titanic[Survived]]) / len(predictions)#测试准确率
24 print accury

 

 
 
 
 
 
 
 

Python机器学习:泰坦尼克号获救预测一

标签:vertica   识别   bar   效果   导入数据   逻辑回归   https   其他   get   

原文地址:https://www.cnblogs.com/cxfly/p/8505851.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!